AX-Sensor 機能マニュアル

Ver. 1.12 対応

AX-NSM-S002-D0

■対象製品

このマニュアルは、AX-Sensorについて記載しています。 必ず後述するマニュアルの読書手順に記載した他のマニュアルと併せてお読みください。

■輸出時の注意

本製品を輸出される場合には、外国為替および外国貿易法ならびに米国の輸出管理関連法規などの規制をご確認の上、必要な手続きをお取りください。 なお、ご不明な場合は、弊社担当営業にお問い合わせください。

■商標一覧

Ethernet は、富士フイルムビジネスイノベーション株式会社の登録商標です。 イーサネットは、富士フイルムビジネスイノベーション株式会社の登録商標です。 その他、各会社名、各製品名は、各社の商標または登録商標です。

■マニュアルはよく読み、保管してください。 製品を使用する前に、安全上の説明を読み、十分理解してください。 このマニュアルは、いつでも参照できるよう、手近な所に保管してください。

■ご注意

このマニュアルの内容については、改良のため、予告なく変更する場合があります。

■発行

2025年 11月(第14版) AX-NSM-S002-D0

■著作権

All Rights Reserved, Copyright (C), 2018, 2025, ALAXALA Networks, Corp.

変更履歴

【Ver. 1. 12 対応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
6.1.4.1 フローの識別条件	• 表 6.1-1 フロー条件とフロー識別条件の関係の識別子 IPv4 アド
	レス(SIP),IPv4 アドレス(DIP),IPv6 アドレス(SIP) および
	IPv6 アドレス (DIP) に注釈を追加しました。
6.1.4.17 トンネリングパケット	• 本項を新規追加しました。
集計機能	

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 11 対応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
3.1.2 リモート運用端末	• 表 3.1-3 本装置の ssh 詳細機能サポート一覧の共通鍵暗号方式
	に鍵交換のアルゴリズムを追加しました。
6.1.4.3 NetFlow 設定パラメータ	• 表 6.1-3 NetFlow Exporter 機能の設定パラメータ一覧 のコンフィ
	グレーション「flow-max-entry」および「flow send-interval」
	のデフォルト値を変更しました。
6. 1. 4. 18 NetFlow キャッシュエ	• 注意事項の内容を訂正しました。
ージング機能	

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 10 対応版】

表 変更履歴

× ×××××	
章・節・項・タイトル	追加・変更内容
3.1.2 リモート運用端末	• 表 3.1-2 本装置の ssh 機能サポート一覧の ssh サーバセキュアコ
	ピー機能の実装を訂正しました。
	• 表 3.1-3 本装置の ssh 詳細機能サポート一覧の共通鍵暗号方式
	に鍵交換のアルゴリズムを追加しました。
6.1.4.2 NetFlow パケット形式	• 表 6.1-2 Template ID に Template-ID 1029, 1030, 2053 および 2054
	を追加しました。
6.1.4.15 HTTP 情報測定機能	• 表 6.1-10 HTTP 情報測定機能の測定項目に UDP パケットの説明
	を追記しました。
6. 1. 4. 18 NetFlow キャッシュエ	• 注意事項に HTTP/3 フローの説明を追記しました。
ージング機能	

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 9 対応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
6.1.4.19 パケットサンプリング	• 本項を新規追加しました。
機能	

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 8 对応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
3.1.2 リモート運用端末	• 表 3.1-3 本装置の ssh 詳細機能サポート一覧のクライアント機
	能に関する誤記を修正しました。
4.4.4.2 ライセンス失効後の動作	• 表 4.4-5 ライセンス失効で使用不可となる機能の内容および備
	考欄の説明を訂正ました。
6.1.4.1 フローの識別条件	• 表 6.1-1 フロー条件とフロー識別条件の関係 に識別子を追加し
	ました。
	◆ 表 6.1-1 フロー条件とフロー識別条件の関係の識別子
	EthernetType に注釈を追加しました。
6.1.4.3 NetFlow 設定パラメータ	• 表 6.1-3 NetFlow Exporter 機能の設定パラメータ一覧のコンフィ
	グレーション「flow packet-max-size」のデフォルト値を変更し
	ました。
	• 表 6.1-3 NetFlow Exporter 機能の設定パラメータ一覧のコンフィ
	グレーション「flow packet-max-size」および「flow source-
	id」の説明を訂正しました。
6. 1. 4. 4 NetFlow Data FlowSet ©	• 送信契機の条件を追記しました。
送信契機	
6.1.4.5 フロー識別条件の変更	• 表 6.1-4 フロー識別条件の変更によるコンフィグレーション対
	応に識別子を追加しました。
6.1.4.13 ARP 情報測定機能	• 本項を新規追加しました。
6.1.4.14 TCP 遅延測定機能	• 本機能と MAC フローの制限に関する注意事項を削除しました。
6.1.4.15 HTTP 情報測定機能	● 表 6.1-10 HTTP 情報測定機能の測定項目に L4 ポート番号に関す
·	る説明を追記しました。
6.1.4.16 UDP 情報測定機能	• 本項を新規追加しました。
7.2 障害情報取得方法	• scp に関する説明を追記しました。

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 7 対応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
付録 A. 2 SSH	 規格番号 RFC4255, RFC4345 を削除しました。 規格番号 RFC6668, RFC8270, RFC8308, RFC8332, RFC8709, RFC8731 を追加しました。

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 6 対応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
3.1.2 リモート運用端末	• 表 3.1-3 本装置の ssh 詳細機能サポート一覧の共通鍵暗号方式
	とホスト認証から非推奨のアルゴリズムを削除しました。
	• 表 3.1-3 本装置の ssh 詳細機能サポート一覧にホスト認証のア
	ルゴリズムを新規追加しました。
	● 表 3.1-3 本装置の ssh 詳細機能サポート一覧のホスト認証のア
	ルゴリズムの記載順序を一部変更しました。
4.4.1 ライセンスの概要	• 初年度ライセンス、1年延長ライセンス、永続ライセンスの有効
	期間に関するルールを追加しました。
	• 表 4.4-1 AX-Sensor のライセンス一覧に AX-PA1630-01P と AX-
	PA1630-02P を追加しました。
4.4.3 ライセンスの削除方法	• 表 4.4-2 ライセンスの削除条件に AX-PA1630-01P と AX-NS-S02
	を追加しました。
5.3.1 コンフィグレーション	• syslog 出力データのヘッダ部に付ける facility に関する注意事
	項を追加しました。
6.1.4.3 NetFlow 設定パラメータ	• 表 6.1-3 NetFlow Exporter 機能の設定パラメータ一覧のコンフィ
	グレーション「flow-max-entry」と「expire-time」の説明を訂
	正しました。
6.1.4.14 TCP 遅延測定機能	• 再送に関連するカウンタの集計機能を追加しました。
6.1.4.15 HTTP 情報測定機能	• 本項を新規追加しました。
6. 1. 4. 18 NetFlow キャッシュエ	• 本項を新規追加しました。
ージング機能	

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 5 対応版】

表 変更履歴

女 友 文 版 证	
章・節・項・タイトル	追加・変更内容
1.3.1 本装置のモデル	• 表 1.3-1 最大ポート数ごとの対応モデルに AX-Sensor-08TL モデ
	ルを追加しました。
1.3.2 装置の外観	• 図 1.3-1 に AX-Sensor-08TL モデルを追加しました。
1.3.3 ハードウェア	• 図 1.3-3 に AX-Sensor-08TL モデルを追加しました。
2.2.1 IP アドレスを設定できる	• 表 2.2-1 図 1.3-3 に AX-Sensor-08TL モデルを追加しました。
インタフェースの最大数	
2.2.2 IP アドレス最大設定数	• 表 2.2-3 に AX-Sensor-08TL モデルを追加しました。
2.2.3 使用可能回線数	• 表 2.2-5 使用可能回線数に AX-Sensor-08TL モデルを追加しまし
	<i>t</i> =。
2.3.1 ポート収容条件	• 表 2.3-1 モニタポート上限数,表 2.3-2 センサ出力ポート上限
	数,表 2.3-3 マネジメントポート上限数に AX-Sensor-08TL モデ
	ルを追加しました。
4.4.1 ライセンスの概要	• 表 4.4-1 に AX-NS-SO2 を追加しました。
6.1.4.1 フローの識別条件	• フロー識別子 Ethernet Type を追加しました。
6.1.4.3 NetFlow 設定パラメータ	• 表 6.1-3 に flow send-interval の項目を追加しました。
6.1.4.5 フロー識別条件の変更	• フロー識別子 EthernetType を追加しました。
6.1.4.11 IP アドレス集約機能	• IP アドレス集約機能の対象に IPv6 フローを追加しました。
	• 注意事項から "IPv4 アドレスのみサポート対象"を削除しまし
	<i>t</i> =。
6.1.4.14 TCP 遅延測定機能	• 本項を新規追加しました。

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 4 対応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
1.3.4 搭載メモリ量	● 表 1.3-2 実装メモリ量と内蔵フラッシュメモリ量の誤記を訂正
	しました。
2.3.2 NetFlow Exporter 機能	• フロー条件に IPv6 フローを追加しました。
4.4.4 ライセンスの失効	• 本項を新規追加しました。
4.5.3 ログインユーザの初期化	• 本項を新規追加しました。
4.7.5 コンフィグレーションの初	• 本項を新規追加しました。
期化	
6.1.4.1 フローの識別条件	• フロー条件に IPv6 フローを追加しました。
6.1.4.2 NetFlow パケット形式	• フロー条件に IPv6 フローを追加しました。
6.1.4.5 フロー識別条件の変更	• フロー条件に IPv6 フローを追加しました。
6.1.4.8 expire-time の複数種別指	• フロー条件に IPv6 フローを追加しました。
定	
6.1.4.11 IP アドレス集約機能	• 本項を新規追加しました。
6.1.4.12 オクテット数補正	• 本項を新規追加しました。
6.2.2 コンフィグレーション設定	• IPアドレス集約およびオクテット数補正の設定、VLAN Tagを識
例	別する TPID 値の設定を追加しました。
7.1 装置の問題,障害発生時の対	• (6)を新規に追加しました。
応	

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 3 対応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
4.10.1 ソフトウェアのアップデ	• バージョンダウン時における注意事項を追加しました。
<u>-</u> ト	
5.7.1 コンフィグレーション	• system temperature-warning-level コマンドの設定例を追加し
	ました。
5.7.2 オペレーション	• show environment temperature-logging コマンドの表示例を追
	加しました。
6.1.4.3 NetFlow 設定パラメータ	• expire-time の説明欄を更新しました。
6.1.4.7 NetFlow 情報量計測機能	• 本項を新規追加しました。
6.1.4.8 expire-time の複数種別指	• 本項を新規追加しました。
_ 定 6. 1. 4. 7	
6.1.4.9 コレクタ宛先ごとのフロ	• 本項を新規追加しました。
一条件指定	
6.1.4.10 NetFlow 送信間隔の平	• 本項を新規追加しました。
準化調節機能	
6.2.2 コンフィグレーション設定	• expire-time の複数種別指定およびコレクタ宛先ごとのフロー条
例	件指定の設定を追加しました。

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1. 2 対応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
1.3.1 本装置のモデル	• 内容を一部変更しました。
2.2.3 使用可能回線数	• 内容を一部変更しました。
2.2.4 テーブルエントリ数	• ルーティングテーブルエントリのテーブル項目を追加しました。
2.3.1 ポート収容条件	• 内容を一部変更しました。
5.1 ネットワーク構成例	• 内容を一部変更しました。
5.5 スタティックルーティング	• 題目を変更しました。
5.5.1 コンフィグレーション	• 宛先プレフィックス指定の設定を追加しました。
6.1.1 モニタポート	• Deny-Filter 機能の内容を追加しました。
6. 1. 4. 6 Deny-Filter 機能	• Deny-Filter 機能の説明を追加しました。
6.2.2 コンフィグレーション設定	• Deny-Filter 機能の設定を追加しました。
_ 例	

なお、単なる誤字・脱字などはお断りなく訂正しました。

【Ver. 1.1 对応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
2.1 ログインセキュリティ	• 最大ログイン数を変更しました。
4.11.1 LED と本装置の状態	• 内容を一部変更しました。
4.11.2 障害監視	• 内容を一部変更しました。
5.1 ネットワーク構成例	• 構成例の要素を追加しました。
5. 4 SNMP	本節を追加しました。
6.1.4.1 フローの識別条件	• フローの識別条件の項目を追加しました。
6.1.4.5 フロー識別条件の変更	本項を追加しました。
6.2.2 コンフィグレーション設定	• フロー識別条件の変更設定を追加しました。
例	
付録 A. 6 SNMP	• 本節を追加しました。
付録 A. 7 MIB	• 本節を追加しました。

なお、単なる誤字・脱字などはお断りなく訂正しました。

【初版 Ver. 1.0 对応版】

表 変更履歴

章・節・項・タイトル	追加・変更内容
全体	• 初版発行

はじめに

■このマニュアルについて

このマニュアルはAX-Sensorに関する取り扱いについて示したものです。操作を行う前にこのマニュアルをよく読み、書かれている指示や注意を十分に理解してください。また、このマニュアルは必要な時にすぐ参照できるよう、使いやすい場所に保管してください。

■対象読者

このマニュアルは、AX-Sensorを利用したネットワークシステムを構築し、運用するシステム管理者の方を対象としています。

また、次に示す知識を理解していることを前提としています。

・ネットワークシステム管理の基礎的な知識

■マニュアルの読書手順

●初期導入時の基本的な設定について知りたい、 ハードウェアの設置条件、取扱方法を調べる

AX-Sensor ハードウェア取扱説明書 (AX-NSM-H001)

●ラック搭載の手順について知りたい

MNTKIT-01 ハードウェア取扱説明書 (AXMK-H001)

サソフトウェアの機能, コンフィグレーションの設定, 運用方法について知りたい

AX-Sensor 機能マニュアル

(AX-NSM-S002)

●MIB について知りたい

AX-Sensor MIB レファレンス

(AX-NSM-S005)

●コマンドの入力シンタックス, パラメータ詳細や出力メッセージ について知りたい

AX-Sensor コマンド・ログレファレンス

(AX-NSM-S003)

目次

1	概要	13
	1.1 本装置の概要	14
	1.2 本装置の特長	15
	1.3 本装置の構成	16
	1.3.1 本装置のモデル	17
	1.3.2 装置の外観	18
	1.3.3 ハードウェア	19
	1.3.4 搭載メモリ量	21
2	?収容条件	22
	2.1 ログインセキュリティ	23
	2.2 IP インタフェース	24
	2.2.1 IP アドレスを設定できるインタフェースの最大数	25
	2.2.2 IP アドレス最大設定数	26
	2.2.3 使用可能回線数	27
	2.2.4 テーブルエントリ数	28
	2.2.5 各種サーバ設定数	29
	2.3 センサ機能	30
	2.3.1 ポート収容条件	31
	2.3.2 NETFLOW EXPORTER 機能	32
3	『運用端末による管理	33
	3.1 運用端末	
	3.1.1 コンソール	
	3.1.2 リモート運用端末	
	3.2 運用端末の接続形態	41
4	『運用ガイド	
	4.1 装置起動・停止	
	4.1.1 起動から停止までの概略	
	4.1.2 装置の起動	
	4.1.3 装置の停止	
	4.2 ログイン・ログアウト	
	4.2.1 ログイン	_
	4.2.2 ログアウト	_
	4.3 コマンド入力モード	
	4.3.1 コマンド入力モード	_
	4.3.2 コマンド入力モードの遷移	
	4.4 ライセンス	
	4.4.1 ライセンスの概要	
	4.4.2 ライセンスの設定方法	
	4.4.3 ライセンスの削除方法	56

	4.4.4 ライセンスの失効	57
	4.5 ログインユーザの設定	59
	4.5.1 ログインユーザのパスワード変更	60
	4.5.2 ログインユーザの作成および削除	61
	4.5.3 ログインユーザの初期化	
	4.6 CLI での操作	63
	4.6.1 補完機能	64
	4.6.2 ヘルプ機能	65
	4.6.3 入力エラー指摘機能	66
	4.6.4 コマンド短縮実行	67
	4.6.5 ヒストリ機能	68
	4.6.6 ページング	70
	4.6.7 キーボードコマンド機能	71
	4.6.8 CLI 設定のカスタマイズ	72
	4.7 コンフィグレーション	73
	4.7.1 コンフィグレーションの運用	
	4.7.2 コンフィグレーションの編集	75
	4.7.3 コンフィグレーションのエクスポート	77
	4.7.4 コンフィグレーションのインポート	
	4.7.5 コンフィグレーションの初期化	
	4.8 TELNET/SSH によるログイン	80
	4.9 FTP によるログイン	
	4.10 ソフトウェアのアップデート	82
	4.10.1 ソフトウェアのアップデート	83
	4.10.2 装置内バックアップ	
	4.11 装置管理機能	85
	4.11.1 LED と本装置の状態	
	4.11.2 障害監視	87
5	ネットワーク機能	89
	5.1 ネットワーク構成例	90
	5.2 インタフェース設定	91
	5.2.1 コンフィグレーション	92
	5.2.2 オペレーション	93
	5.3 SYSLOG 出力	94
	5.3.1 コンフィグレーション	95
	5.3.2 オペレーション	96
	5.4 SNMP	97
	5.4.1 コンフィグレーション	98
	5.5 スタティックルーティング	99
	5.5.1 コンフィグレーション	-100
	5.5.2 オペレーション	-101
	5.6 NTP クライアント	
	5.6.1 コンフィグレーション	-103
	5.6.2 オペレーション	-104
	5.7 その他の装置関連情報	

	5.7.1 コン	vフィグレーション	106
	5.7.2 オヘ	ペレーション	107
6	センサ機能		108
	6.1 解説		109
	6.1.1 E =	ニタポート	110
	6.1.2 セン	ノサ出カポート	111
	6.1.3 マオ	トジメントポート	112
	6.1.4 NET	·FLOW EXPORTER 機能	113
	6.2 コンフィ	[,] グレーション	134
	6.2.1 NET	FLOW EXPORTER 機能のネットワーク構成例	135
	6.2.2 コン	vフィグレーション設定例	136
7	トラブル発生	三時の対応	139
	7.1 装置の問	問題,障害発生時の対応	140
	7.2 障害情報	B取得方法	142
	7.3 本装置の)再起動	143
8	注意事項		144
	8.1 注意事項	Į	145
付	録		146
	付録 A 準	拠規格	147
	付録 A.1	NETFLOW	147
	付録 A.2	SSH	147
	付録 A.3	NTP	147
	付録 A.4	SYSLOG	148
	付録 A.5	イーサネット	148
	付録 A.6	SNMP	148
	付録 A.7	MIB	149

7 概要

この章では,本装置の概要について説明します。

- 1.1 本装置の概要
- 1.2 本装置の特長
- 1.3 本装置の構成

1.1 本装置の概要

近年、キャリアネットワークやサービスプロバイダ、エンタープライズなどの比較的大規模なネットワークに限らず、SMB(Small and Medium Business)や SOHO(Small Office, Home Office)などにも IP 電話、インターネット接続、企業の業務通信、携帯通信などが利用されるとともに IoT(Internet of Things)技術の発展により様々な機器がネットワークにつながり、通信サービスのトラフィック量増大が顕著で、ネットワークはより大容量化/高速化されていく傾向にあります。

また,これらのネットワーク運用において,トラフィックの監視やサイバー攻撃に対するセキュリティ 対策,機器の故障などを検知することは必須であるが,事象や障害の発生後に対応する傾向にありま す。

本装置はこのようなネットワーク運用支援のネットワークセンサシステムを構成する、センサ機能を 有するアプライアンス製品です。

製品コンセプト

本装置はトラフィック可視化やサイレント故障などの異常検知, 更にネットワークレイヤセキュリティを実現するために, リアルタイムにパケットを統計, 通知する機能に特化した新たなアプライアンス製品です。AX-Collector や他社の NetFlow Collector と連携します。

本装置は次の機能を実現します。

• NetFlow Exporter 機能により、リアルタイムにパケットを統計、通知することで連携する AX-Collector や他社の NetFlow Collector によりネットワーク状況の可視化を実現

1.2 本装置の特長

(1) NetFlow Exporter 機能

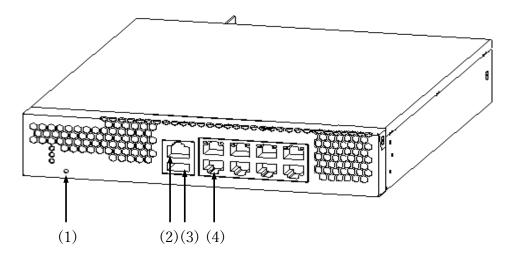
- ●柔軟なフロー識別条件
 - ・標準のNetFlow v9に加え、アラクサラ独自のフロー識別(AX-Flow)をサポート
- (2) ミッションクリティカル対応のネットワークを実現する高信頼性
- ●高い装置品質
 - ・厳選した部品と厳しい設計・検査基準による装置の高い信頼性
- (3) 高性能・高密度でコンパクト・環境負荷低減
- ●優れたパフォーマンス
 - ・キャリアネットワークやクラウド事業者,またはデータセンタ事業者,エンタープライズから公共 文教などの幅広いネットワーク分野向け小型アプライアンス製品として適用
- ●コンパクト・高性能
 - ・1U ハーフサイズのコンパクトな筐体に 1Gbps×4, あるいは 10Gbps のモニタ回線を収容
- ●RoHS 対応の環境負荷低減を実現

1.3 本装置の構成

本装置の構成について説明します。

1.3.1 本装置のモデル

本装置の最大ポート数ごとの対応モデルを次の表に示します。


表 1.3-1 最大ポート数ごとの対応モデル

最大ポート数による分類	対応モデル	
10BASE-T/100BASE-TX/1000BASE-T	8 ポート	AX-Sensor-08T AX-Sensor-08TL
10BASE-T/100BASE-TX/1000BASE-T 10GBASE-SR/LR	8 ポート 2 ポート	AX-Sensor-08T2X

1.3.2 装置の外観

装置外観を次の図に示します。ハードウェアの詳細については「ハードウェア取扱説明書」を参照ください。

図 1.3-1 AX-Sensor-08T, AX-Sensor-08TL モデル

- (1) RESET スイッチ
- (2) CONSOLE ポート
- (3) USB ポート
- (4) 10BASE-T/100BASE-TX/1000BASE-T イーサネットポート

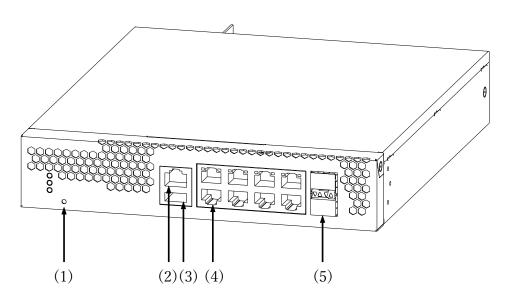
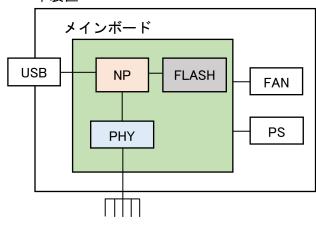


図 1.3-2 AX-Sensor-08T2X モデル


- (1) RESET スイッチ
- (2) CONSOLE ポート
- (3) USB ポート
- (4) 10BASE-T/100BASE-TX/1000BASE-T イーサネットポート
- (5) SFP スロット

1.3.3 ハードウェア

本装置の各モデルは、統一したアーキテクチャで設計しています。 ハードウェア構成を次の図に示します。

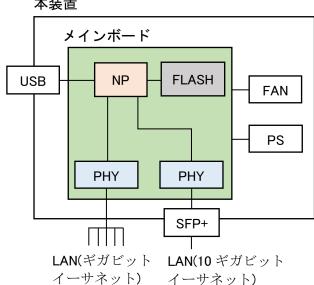
図 1.3-3 ハードウェア構成 (AX-Sensor-08T, AX-Sensor-08TL モデル)

本装置

LAN(ギガビットイーサネット)

NP: Network Processor

FLASH: FLASH memory


PS: Power Supply

USB : Universal Serial Bus

PHY: Physical Interface

図 1.3-4 ハードウェア構成 (AX-Sensor-08T2X モデル)

本装置

NP: Network Processor

FLASH: FLASH memory

PS: Power Supply

USB : Universal Serial Bus

PHY: Physical Interface

(1) 装置筐体

装置筐体には、メインボード、PS、FAN が含まれています。

(2) メインボード

メインボードは NP 部, FLASH 部, USB, PHY 部から構成されます。

• NP 部 (Network Processor)

装置全体の管理, PHY 部の制御, 各種プロトコル処理をソフトウェアで行います。 ソフトウェアは FLASH 部に搭載される内蔵フラッシュメモリに格納されます。

• FLASH 部(FLASH memory)

ソフトウェア/コンフィグレーションファイル/ログ情報が格納されます。

• USB (Universal Serial Bus)

USB ポートです。未使用ポート(未サポート)となります。

• PHY 部 (Physical Interface)

各種メディア対応のインタフェース部です。

(3) PS (Power Supply)

PS は外部供給電源から本装置内で使用する直流電源を生成します。PS は本装置に内蔵されている ため PS 故障時には装置の交換が必要です。

(4) FAN

本装置は装置内部を冷却するための FAN を装備します。 FAN は本装置に内蔵されているため FAN 故障時には装置の交換が必要です。

1.3.4 搭載メモリ量

実装メモリ量および内蔵フラッシュメモリ量を次の表に示します。本装置では実装メモリおよび内蔵 フラッシュメモリの増設はできません。

表 1.3-2 実装メモリ量と内蔵フラッシュメモリ量

項目	全モデル共通
実装メモリ量	8GB
内蔵フラッシュメモリ量	2GB

2 収容条件

この章では、収容条件について説明します。

- 2.1 ログインセキュリティ
- 2.2 IP インタフェース
- 2.3 センサ機能

2.1 ログインセキュリティ

リモート運用端末から本装置への最大ログイン数を表 2.1-1に示します。

表 2.1-1 リモート装置端末から本装置への最大ログイン数

プロトコル	最大ログイン数	
telnet および ssh	合計で 20	

初期導入時には、ユーザ ID"operator"及び"admin"はパスワードなしの設定になっています。 パスワード設定コマンドにより、パスワードを設定してご使用ください。

注意事項

・本装置で許可するリモート接続は telnet および ssh のみとなります。ftp による接続は許可しません。

2.2 IPインタフェース

この節では、IPインタフェースについて説明します。

IPアドレスを設定したインタフェースをIPインタフェースと呼びます。 ここでは、IP アドレスを設定できるインタフェースの最大数、設定できるIP アドレスの最大数、通信できる相手装置の最大数などについて説明します。

2.2.1 IPアドレスを設定できるインタフェースの最大数

本装置でサポートする IPv4 アドレスを設定可能なインタフェースの最大数を次の表に示します。

表 2.2-1 AX-Sensor-08T, AX-Sensor-08TL モデル

物理インタフェース	IP アドレス設定可能インタフェース最大数
10/100/1000BASE-T	8

表 2.2-2 AX-Sensor-08T2X モデル

物理インタフェース	IP アドレス設定可能インタフェース最大数		
10/100/1000BASE-T	4		
SFP スロット	1		

2.2.2 IPアドレス最大設定数

コンフィグレーションで本装置に設定できる IPv4 アドレスの最大数を次の表に示します。

表 2.2-3 AX-Sensor-08T, AX-Sensor-08TL モデル

物理インタフェース	各物理インタフェースに設定可能な IPv4 アドレス最大数
10/100/1000BASE-T	1

表 2.2-4 AX-Sensor-08T2X モデル

物理インタフェース	各物理インタフェースに設定可能な IPv4 アドレス最大数
10/100/1000BASE-T	1
SFP スロット	1

注意事項

・各物理インタフェースに複数の IP アドレスを設定しないでください。

2.2.3 使用可能回線数

各モデルの使用可能回線数を次の表に示します。

表 2.2-5 使用可能回線数

ポートの種類	AX-Sensor-08T	AX-Sensor-08TL	AX-Sensor-08T2X
10BASE-T/100BASE-TX/1000BASE-T ポート	8(eth1~eth8)**1	8(eth1~eth8)*1	4(eth1~eth4)*1
10GBASE-SR/LR ポート	_	_	1 (eth10) **1

(凡例) -:該当なし

注※1

カッコ内は使用可能の物理インタフェース名です。

2.2.4 テーブルエントリ数

本装置のテーブルエントリ数を示します。テーブルエントリとは、telnet などで本装置自体との通信をするネットワーク機器、および端末の情報を意味します。

(1) ARP エントリ数

IPv4 の場合, LAN ではARP によって、送信しようとするフレームの宛先アドレスに対応するハードウェアアドレスを決定します。本装置でサポートするARP エントリの最大数を表2.2-6に示します。

表 2.2-6 本装置の ARP テーブルエントリの最大数

テーブル	エントリ最大数
ARP	128

(2) スタティックルーティングエントリ数

本装置でサポートするスタティックルーティングエントリの最大数を表 2.2-7 に示します。

表 2.2-7 本装置のスタティックルーティングテーブルエントリの最大数

テーブル	エントリ最大数
デフォルトゲートウェイ	1
宛先プレフィックス**1	8

注※1

1経路あたりに設定できるネクストホップアドレスは1つです。

2.2.5 各種サーバ設定数

本装置にコンフィグレーションで設定できる各種サーバの設定数を次に示します。

(1) SYSLOG サーバ数

SYSLOG 出力先のサーバ設定を行える最大数を次に示します。

表 2.2-8 本装置の SYSLOG サーバ設定の最大数

サーバ	サーバ設定最大数
SYSLOG サーバ	4

(2) NTP サーバ数

NTP サーバ設定を行える最大数を次に示します。

表 2.2-9 本装置の NTP サーバ設定の最大数

サーバ	サーバ設定最大数		
NTP サーバ	4		

2.3 センサ機能

この節では、本装置でサポートするセンサ機能の収容条件について説明します。

2.3.1 ポート収容条件

センサ機能の物理インタフェースに設定する各ポート機能の収容条件を次の表に示します。

表 2.3-1 モニタポート上限数

モデル	インタフェース種別	モニタポート上限数
AX-Sensor-08T	10/100/1000BASE-T	4
AX-Sensor-08TL	10/100/1000BASE-T	2
AV Carana OCTOV	10/100/1000BASE-T	2
AX-Sensor-08T2X	10GBASE-SR/LR	1

注意事項

- ・AX-Sensor-08T2X モデルでは 4 ポートまでモニタポート設定が可能ですが,動作上限数は上記のとおりです。
- ・モニタポートはセンサ出力ポート、マネジメントポートとの併用はできません。

表 2.3-2 センサ出力ポート上限数

モデル	センサ出力ポート上限数
AX-Sensor-08T	1
AX-Sensor-08TL	1
AX-Sensor-08T2X	1

注意事項

・センサ出力ポートはマネジメントポートと併用できます。

表 2.3-3 マネジメントポート上限数

モデル	マネジメントポート上限数
AX-Sensor-08T	1
AX-Sensor-08TL	1
AX-Sensor-08T2X	1

注意事項

・マネジメントポートはセンサ出力ポートと併用できます。

2.3.2 NetFlow Exporter機能

NetFlow Exporter 機能ではモニタポートから受信したトラフィックからフローごとに集計を行います。フローの最大エントリ数を次の表に示します。

なお、NetFlow Exporter 機能の詳細は 6.1.4 節「NetFlow Exporter 機能」を参照ください。

表 2.3-4 フローの最大エントリ数

フロー条件	最大エントリ数(装置当り)
MAC フロー	1, 000, 000
IPv4 フロー	1,000,000
IPv6 フロー	1,000,000

注意事項

・複数のフロー条件を同時動作させる場合はエントリ数の合計が 1,000,000 となるようにコンフィグレーションを設定してください。

表 2.3-5 フロー情報の送信先上限数

項目	フロー情報の送信先上限数
宛先 IPv4 アドレス / UDP ポート番号の組み合わせ	8

3

運用端末による管理

この章では、運用端末による管理について説明します。

- 3.1 運用端末
- 3.2 運用端末の接続形態

3.1 運用端末

本装置の運用にはコンソールまたはリモート運用端末が必要です。コンソールは RS-232C に接続する端末、リモート運用端末は IP ネットワーク経由で接続する端末です。コンソールやリモート運用端末といった本装置の運用管理を行う端末を運用端末と呼びます。

コンソール接続ではコンフィグレーションを設定していなくてもログインが可能となっていますので、 初期導入時にはコンソールからログインし、初期設定を行ってください。

図 3.1-1 運用環境

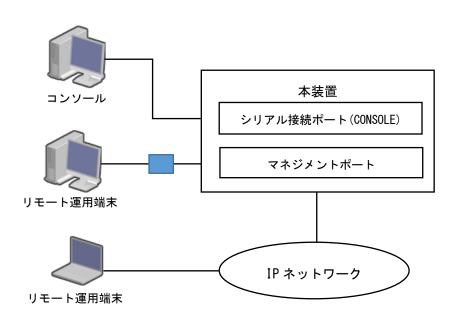


表 3.1-1 運用端末の条件

端末種別	接続形態	必要機能
コンソール	シリアル接続(RS-232C)	RS-232C(通信速度:9600)
リモート運用端末	マネジメントポート経由 での TCP/IP 接続	TCP/IP(telnet, ssh)

注意事項

・本装置の telnet および ssh サーバは、改行コードとして[CR] を認識します。一部のクライアント端末では、改行コードとして[CR] および[LF] を送信します。これらの端末から接続した場合、空行が表示されたり、 (y/n) 確認時にキー入力ができなかったりするなどの現象がおこります。このような場合は、各クライアント端末の設定を確認してください。

3.1.1 コンソール

コンソールは RS-232C に接続する端末で、一般的な通信端末、通信ソフトウェアが使用できます。コンソールが本装置と通信できるように、次の標準 VT-100 設定値(本装置のデフォルト設定値)が通信ソフトウェアに設定されていることを確認してください。

• 通信速度:9600bit/s

データ長:8 ビット

・ パリティビット:なし

・ ストップビット:1 ビット

フロー制御:なし

注意事項

コンソールを使用する場合は次の点に注意してください。

・本装置ではコンソール端末からログインする際に、自動的に VT-100 の制御文字を使用して 画面サイズを取得・設定します。VT-100 に対応していないコンソール端末では、不正な文字 列が表示されたり、最初の CLI プロンプトがずれて表示されたりして、画面サイズが取得・ 設定できません。また、ログインと同時にキー入力した場合、VT-100 の制御文字の表示結果 が正常に取得できないため同様の現象となるので注意してください。この場合は、再度ログ インし直してください。

3.1.2 リモート運用端末

本装置に IP ネットワーク経由で接続してコマンド操作を行う端末が、リモート運用端末です。 telnet プロトコル, ssh プロトコルのクライアント機能がある端末はリモート運用端末として使用できます。

注意事項

・本装置の ssh サーバはパスワードレスのログインをサポートしないため, ssh プロトコルでログイン する場合は必ずログインアカウントにパスワードを設定してください。

本装置では、ssh のプロトコルとしてバージョン 2(SSHv2)のサーバ機能と一部のクライアント機能をサポートしています。

本装置でサポートする ssh の機能一覧を表 3.1-2 に示します。

表 3.1-2 本装置の ssh 機能サポート一覧

項番	機能名	実装	説明	
1	ssh サーバ	0	ssh のサーバ機能です	
2	セキュアリモートログイン	0	ssh のリモートログイン機能です	
3	セキュアコピー	×	ssh を利用したファイルコピー機能です	
4	セキュアファイル転送	×	ssh を利用したファイル転送機能です	
5	ssh クライアント	0	ssh のクライアント機能です。	
6	セキュアリモートログイン	×	ssh のリモートログイン機能です	
7	セキュアコピー	Δ	ssh を利用したファイルコピー機能です 運用コマンド export dump, export conf, update でのみ使用可能です。	
8	セキュアファイル転送	×	ssh を利用したファイル転送機能です	
9	認証エージェント	×	認証エージェント機能です	
10	ポート転送	×	ポート転送(TCP トンネリング)機能です	
11	X11 プロトコル自動転送	×	X11 を自動転送する機能です	
12	データ圧縮	×	通信のデータ圧縮をおこなう機能です	
13	IPv6	×	IPv6 を用いて通信可能です	

実装: ○ … サポート △…一部サポート × … 未サポート

本装置でサポートする ssh 詳細機能一覧を表 3.1-3 に示します。

表 3.1-3 本装置の ssh 詳細機能サポート一覧

項番	機能名			実装	説明	
1	ユー	ユーザ認証機能			0	ユーザ認証を行う方 法です
2		公開鍵認証 RSA サーバ機能			×	RSA 公開鍵を用いた
3				クライアント機能	×	ユーザ認証鍵をサー バ側に登録できます

項番	機能名			実装	説明
4		DSA	サーバ機能	×	DSA 公開鍵を用いた
5	1		クライアント機能	×	ユーザ認証鍵をサー バ側に登録できます
6		EDCSA	サーバ機能	×	EDCSA公開鍵を用い
			クライアント機能	×	たユーザ認証鍵をサ
7					ーバ側に登録できま す
8		ED25519	サーバ機能	×	ED25519 公開鍵を用
9			クライアント機能	×	「いたユーザ認証鍵を サーバ側に登録でき ます
10		PGP		×	PGP 鍵を用いた認証 です
11		CA 認証		×	CA 認証を用いた認証 です
12	パスワード 認証	ローカル	サーバ機能	0	ローカルパスワード 認証です
13			クライアント機能	0	
14		RADIUS/TACACS	;+	×	RADIUS/TACACS+連携 のパスワード認証で す
15	ホストベース/RSARhost 認証				ホストベース認証です
16	チャレンジレスポンス認証				チャレンジレスポン スによる認証です
17	共通鍵暗号方式		0	通信路の暗号化に用 います	
18	暗号化アル ゴリズム	サーバ機能	chacha20- poly1305@openssh.c	0	-
19			aes128-ctr	0	-
20			aes192-ctr	0	-
21			aes256-ctr	0	-
22			aes128- gcm@openssh.com	0	-
23			aes256- gcm@openssh.com	0	-
24			その他	×	上記以外
25		クライアント 機能 ^{**1}	chacha20- poly1305@openssh.c	0	-
26			aes128-ctr	0	-
27			aes192-ctr	0	-
28			aes256-ctr	0	-
29			aes128- gcm@openssh.com	0	-
30			aes256- gcm@openssh.com	0	-
31	1		その他	×	上記以外
32	鍵交換アル ゴリズム	サーバ機能	sntrup761x25519- sha512	0	-

項番	機能名			実装	説明
33			sntrup761x25519-	0	
			sha512@openssh.com		
34			mlkem768x25519-	0	
25	-		sha256 curve25519-sha256		
35	-		curve25519-		_
36			sha256@libssh.org	0	
37			ecdh-sha2-nistp256	0	-
38			ecdh-sha2-nistp384	0	-
39	1		ecdh-sha2-nistp521	0	-
	1		diffie-hellman-	0	-
40			group-exchange-		
			sha256		
41			diffie-hellman- group16-sha512	0	-
40	1		diffie-hellman-	0	-
42			group18-sha512		
43			diffie-hellman-	0	-
			group14-sha256		
44			その他	X	上記以外
45		クライアント	sntrup761x25519-	0	-
		機能※1	sha512@openssh.com		
46			curve25519-sha256	0	-
47			curve25519- sha256@libssh.org	0	
48	-		ecdh-sha2-nistp256	0	-
49			ecdh-sha2-nistp384	0	-
	-		ecdh-sha2-nistp521	0	_
50	-			0	
51			diffie-hellman- group-exchange-		-
01			sha256		
52			diffie-hellman-	0	-
			group16-sha512		
53			diffie-hellman- group18-sha512	0	-
	-		diffie-hellman-	0	-
54			group14-sha256		
55			その他	×	上記以外
56	ホスト認証			0	接続先ホストの正当 性を検証します
57	公開鍵暗号	サーバ機能	rsa-sha2-512	0	-
58	1		rsa-sha2-256	0	-
59	1		ecdsa-sha2-	0	-
			nistp256		
60			ssh-ed25519	0	-
61			その他	×	上記以外
62		クライアント 機能 ^{*1}	ssh-ed25519-cert- v01@openssh.com	0	-
]	機能※1	v01@openssh.com		

項番	機能				実装	説明
				ecdsa-sha2-	0	-
63				nistp256-cert-		
				v01@openssh.com		
				ecdsa-sha2-	0	-
64				nistp384-cert-		
				v01@openssh.com		
				ecdsa-sha2-	0	-
65				nistp521-cert-		
				v01@openssh.com		
				sk-ssh-ed25519-	0	-
66				cert-		
				v01@openssh.com		
				sk-ecdsa-sha2-	0	-
67				nistp256-cert-		
				v01@openssh.com		
				rsa-sha2-512-cert-	0	-
68				v01@openssh.com		
				rsa-sha2-256-cert-	0	-
69				v01@openssh.com		
70				ssh-ed25519	0	-
7.1				ecdsa-sha2-	0	-
71				nistp256		
70				ecdsa-sha2-	0	-
72				nistp384		
70				ecdsa-sha2-	0	-
73				nistp521		
				sk-ssh-	0	-
74				ed25519@openssh. co		
				m		
				sk-ecdsa-sha2-	0	-
75				nistp256@openssh.c		
				om		
76				rsa-sha2-512	0	-
77				rsa-sha2-256	0	-
78				その他	×	上記以外
-					0	データの改ざん防止
79	メッ	セージ認証コー	· F			に用います
90		認証方式	サーバ機能	umac-64-	0	-
80				etm@openssh.com		
0.1				umac-128-	0	-
81				etm@openssh.com		
00				hmac-sha2-256-	0	-
82				etm@openssh.com		
00				hmac-sha2-512-	0	-
83				etm@openssh.com		
0.4				hmac-shal-	0	-
84				etm@openssh.com		
				umac-	0	-
85				64@openssh.com		
0.0	1			umac-	0	-
86				128@openssh.com		
87	1			hmac-sha2-512	0	-
	1	I	I		1	

項番	機能名			実装	説明
88			hmac-sha2-256	0	-
89			hmac-shal	0	-
90			その他	×	上記以外
91		クライアント 機能 ^{※1}	umac-64- etm@openssh.com	0	-
92			umac-128- etm@openssh.com	0	-
93			hmac-sha2-256- etm@openssh.com	0	-
94			hmac-sha2-512- etm@openssh.com	0	-
95			hmac-shal- etm@openssh.com	0	-
96			umac- 64@openssh.com	0	-
97			umac- 128@openssh.com	0	-
98			hmac-sha2-512	0	-
99]		hmac-sha2-256	0	-
100			hmac-shal	0	-
101			その他	×	上記以外

実装: ○ … サポート △…一部サポート × … 未サポート

注※1

アルゴリズムの優先順位が高い項目から順に記載しています。

3.2 運用端末の接続形態

運用端末の接続形態ごとの特徴を表 3.2-1 に示します。

表 3.2-1 コンソールとリモート運用端末の運用管理での適用範囲の違い

運用機能	シリアル接続ポート	マネジメントポート
接続運用端末	コンソール	リモート運用端末
遠隔からのログイン	不可	可
本装置から運用端末へのログイン	不可	可
アクセス制御	なし	あり
コマンド入力	可	可
ファイル転送方式	なし	コマンド(ftp 等を利用)
IP 通信	不可	IPv4
コンフィグレーション設定	不要	必要

(1) シリアル接続ポート

シリアル接続ポートには運用端末としてコンソールを接続します。コンフィグレーションの 設定なしに本ポートを介してログインできるので、初期導入時には本ポートからログインし、 初期設定を行えます。

(2) マネジメントポート

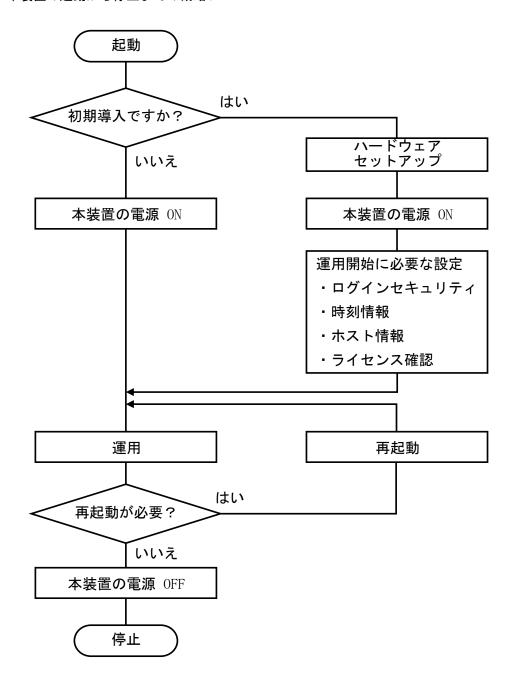
マネジメントポートを介して、telnet、sshで本装置へログインするためには、本装置のコンフィグレーションで IP アドレスおよびリモートアクセスの設定をする必要があります。

 4

 運用ガイド

この章では、本装置での運用について説明します。

4. 1	装置起動・停止
4. 2	ログイン・ログアウト
4. 3	コマンド入力モード
4. 4	ライセンス
4. 5	ログインユーザの設定
4. 6	CLIでの操作
4. 7	コンフィグレーション
4. 8	telnet/ssh によるログイン
4. 9	ftp によるログイン
4. 1	0 ソフトウェアのアップデート
4. 1	


4.1 装置起動・停止

この節では、装置の起動と停止について説明します。

4.1.1 起動から停止までの概略

本装置の起動から停止までの概略フローを図 4.1-1 に示します。ハードウェアセットアップ(本装置の設置,電源ケーブルやコンソールの接続)の内容については,「ハードウェア取扱説明書」を参照してください。

図 4.1-1 本装置の起動から停止までの概略フロー

4.1.2 装置の起動

本装置の起動, 再起動の方法を表 4.1-1 に示します。

表 4.1-1 コンソールとリモート運用端末の運用管理での適用範囲の違い

起動の種類	内容	操作方法
電源 ON による起動	本装置の電源 OFF からの立ち上げです。	本体の電源スイッチを ON にします。
リセットによる再起動	障害発生などによって本装置をリセットした い場合に行います。	本体の RESET スイッチを 押します。
コマンドによる再起動	ソフトウェアのアップデートや障害発生など によって本装置をリセットしたい場合に行い ます。	運用コマンド「reload」を 実行します。

4.1.3 装置の停止

本装置の電源をOFF にする場合は、アクセス中のファイルが壊れるおそれがあるので、本装置にログインしているユーザがいない状態で行ってください。

運用コマンド「reload stop」 で装置を停止させたあとに電源を OFF にすることを推奨します。

4.2 ログイン・ログアウト

この節では, ログインとログアウトについて説明します。

4.2.1 ログイン

装置が起動すると、ログイン画面を表示します。この画面でユーザ ID とパスワードを入力してください。正しく認証された場合は、コマンドプロンプトを表示します。また、認証に失敗した場合は"Login incorrect"のメッセージを表示し、ログインできません。

初期導入時には、ユーザ ID" admin"または"operator" でパスワードなしのログインができます。

初期導入時ログイン画面

login: operator

Password:

No password is set. Please set password!

SP> ... (1)

(1) コマンドプロンプトが表示されます。

ログインタイムアウトについて

リモート接続の場合、接続から約1分以内にログインを完了してください。

4.2.2 ログアウト

CLI での操作を終了してログアウトしたい場合は、運用コマンド「exit」を実行してください。

ログアウト画面(コンソール接続の場合)

SP> exit

login:

自動ログアウトについて

10 分以上キーの入力がなかった場合,自動的にログアウトします。

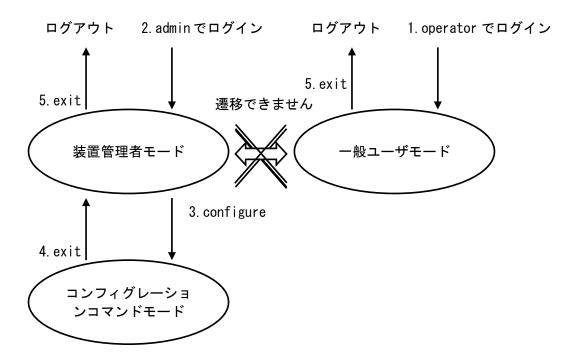
4.3 コマンド入力モード

この節では、コマンド入力モードについて説明します。

4.3.1 コマンド入力モード

本装置でコンフィグレーションの変更を実施したり、または装置の状態を参照したりする場合、適切なコマンド入力モードで、コンフィグレーションコマンドや運用コマンドを入力する必要があります。また、CLI プロンプトでコマンド入力モードを識別できます。

コマンド入力モードとプロンプトの対応を表 4.3-1に示します。


表 4.3-1 コマンド入力モードとプロンプトの対応

コマンド入力モード	実行可能なコマンド	プロンプト
一般ユーザモード	運用コマンドの一部	SP>
装置管理者モード	全ての運用コマンド	SP#
コンフィグレーション コマンドモード	コンフィグレーションコマンド	[SP]

4.3.2 コマンド入力モードの遷移

コマンド入力モードの遷移について図 4.3-1に示します。

図 4.3-1 コマンド入力モード遷移の概要

- 1. operator権限でログインした場合,一般ユーザモードになります。
- 2. admin権限でログインした場合、装置管理者モードになります。
- 3. 装置管理者モードでコマンド「configure」を実行することにより、コンフィグレーションコマンドモードへと遷移します。
- 4. コンフィグレーションコマンドモードでコマンド「exit」を実行することで、装置管理者モードへと遷移します。
- 5. 一般ユーザモード、装置管理者モードでコマンド「exit」を実行することで本装置からログアウトします。

一般ユーザモードと装置管理者モードはコマンドによるモード遷移はできません。モードを変更した い場合は、いったんログアウトした後、目的のモードに合わせたユーザにて再度ログインしてくださ い。

注意事項

・コンフィグレーションコマンドモードへは 1 ユーザのみ遷移可能です。別のユーザがコンフィグレーションコマンドモードになっている場合は、コマンド「configure」はエラーとなります。

4.4 ライセンス

この節では、ライセンスについて説明します。

4.4.1 ライセンスの概要

ライセンスはセンサ機能を有効化するためのものです。ライセンスはライセンスキーを記述した「ライセンス使用許諾契約書兼ライセンスシート」または、「ソフトウェア使用条件書」で提供します。

ライセンスは以下のルールに従います。

- 装置ごとに対応したライセンスが必要です。
- ライセンスを設定した場合、センサ機能の有効化は即時に行われます。
- ライセンスは有効期間のある初年度ライセンスおよび 1 年延長ライセンスと有効期間のない永 続ライセンスがあります。
- ライセンスの有効期間を過ぎた場合は対象機能が無効化されます。有効期間を延長するには対象機能の期間延長ライセンスの設定が必要です。
- ・ 装置の交換時にはライセンスキーの再設定が必要です。ソフトウェアのバージョンアップ時は、 ライセンスの再設定は不要です。
- ライセンスキーは 32 桁の 16 進数(0~9, a~f)で表現されます。

基本ライセンスは AX-Sensor のセンサ機能を使用するために必須のライセンスです。本装置のライセンス一覧を次の表に示します。

表 4.4-1 AX-Sensor のライセンス一覧

略称	ライセンス名	内容
	AX-PA1630-01	AX-Sensor ソフトウェア 基本機能 初年度ライセンス
AX-NS-S01	AX-PA1630-01E1	AX-Sensor ソフトウェア 基本機能 1 年延長ライセンス
	AX-PA1630-01P	AX-Sensor ソフトウェア 基本機能 永続ライセンス
	AX-PA1630-02	AX-Sensor ソフトウェア AX-Sensor-08TL モデル基本機能 初年度ライセンス
AX-NS-S02	AX-PA1630-02E1	AX-Sensor ソフトウェア AX-Sensor-08TL モデル基本機能 1 年延長ライセンス
	AX-PA1630-02P	AX-Sensor ソフトウェア AX-Sensor-08TL モデル基本機能 永続ライセンス

4.4.2 ライセンスの設定方法

以下の手順でライセンスを設定してください。

- 1. 装置管理者モードで本装置にログインしてください。
- 2. 運用コマンド「show sp」を実行して現在のライセンスを確認してください。
- 3. 運用コマンド「license add〈ライセンスキー〉」でライセンスを設定してください。

間違ったライセンスキーを指定した場合は「Invalid License Key.」と表示されますので正しいライセンスキーを指定してください。

ライセンスキーの大文字と小文字区別されるため小文字で入力してください。また、ハイフン (-)を省略した形式でもライセンスキーを指定できます。

4. 運用コマンド「show sp」を実行して手順3で設定したライセンスが表示されることを確認してください。

設定したライセンスキーの先頭16桁が表示されます。

以上で, ライセンスの設定は終了です。

設定は即時反映され、センサ機能が有効化されます。

4.4.3 ライセンスの削除方法

以下の手順でライセンスを削除してください。

- 1. 装置管理者モードで本装置にログインしてください。
- 2. 運用コマンド「show sp」を実行して現在のライセンスを確認してください。
- 3. 運用コマンド「license del〈シリアル番号〉」でライセンスを削除してください。

〈シリアル番号〉は運用コマンド「show sp」で表示されたライセンスキーの先頭 16 桁を指定します。ハイフン(-)を省略せずに指定してください。

間違ったシリアル番号を指定した場合は「Invalid License Key.」と表示されますので正しいシリアル番号を指定してください。

シリアル番号は大文字と小文字を区別するため小文字で指定してください。

4. 運用コマンド「show sp」を実行して手順3で削除したライセンスが表示されないことを確認してください。

以上で, ライセンスの削除は終了です。

削除は即時反映され、センサ機能が無効化されます。

次にライセンスの削除条件について示します。

表 4.4-2 ライセンスの削除条件

略称	ライセンス名	削除条件
	AX-PA1630-01	AX-PA1630-01E1 が設定されていない場合に削除可能
AX-NS-S01	AX-PA1630-01E1	常に削除可能
	AX-PA1630-01P	常に削除可能
	AX-PA1630-02	AX-PA1630-02E1 が設定されていない場合に削除可能
AX-NS-S02	AX-PA1630-02E1	常に削除可能
	AX-PA1630-02P	常に削除可能

4.4.4 ライセンスの失効

ラインセスの失効について説明します。

4.4.4.1 ライセンス失効前のアラート通知

ライセンスの有効期間が終了する3カ月前の月初め(1日)にライセンス失効3ヶ月前のアラート通知を 行います。センサ機能は継続して使用可能です。

ライセンス失効3ヶ月前のアラート通知について以下に示します。

表 4.4-3 ライセンス失効 3ヶ月前のアラート通知

#	アラート種別	通知	備考
1	運用メッセージ	 ・運用メッセージでライセンス失効3ヶ月前の 通知を出力します。 ・ライセンス失効3ヶ月前に1回のみ通知します。 ・syslog 出力の設定がある場合には syslog サーバに通知します。 	・メッセージ内容は 「AX-Sensor コマンド・ ログレファレンス」の 「表 1.3-8 ライセンス 関連運用メッセージ」を 参照してください。
2	プロンプト	・コマンド入力モードで運用コマンド「show sp」の実行を促すメッセージが出力されます。 ・ライセンスの追加により有効期間が延長されるまで、プロンプトに毎回メッセージを出力します。	・プロンプトに以下のメ ッセージが出力されま す。 You have warning messages. Use "show sp" to see them.
3	運用コマンド	・運用コマンド「show sp」の WARNING 情報にライセンス失効 3ヶ月前のメッセージが出力されます。 ・ライセンスの追加により有効期間が延長されるまで、WARNING 情報に毎回メッセージを出力します。	・メッセージ内容は 「AX-Sensor コマンド・ ログレファレンス」の運 用コマンド「show sp」 および「表 1.2-5 show spで表示される(2)の WARNING 一覧」を参照し てください。

4.4.4.2 ライセンス失効後の動作

ライセンスの有効期間が終了するとラインセンス失効のアラート通知を行います。ライセンスが失効すると機能の一部が使用不可となります。

ライセンス失効時のアラート通知について以下に示します。

表 4.4-4 ライセンス失効時のアラート通知

#	アラート種別	通知	備考
1	運用メッセージ	・運用メッセージでライセンス失効の通知を出力します。 ・ライセンス失効時に1回のみ通知します。 ・syslog 出力の設定がある場合には syslog サーバに通知します。	・メッセージ内容は 「AX-Sensor コマンド・ ログレファレンス」の 「表 1.3-8 ライセンス 関連運用メッセージ」を 参照してください。
2	プロンプト	・コマンド入力モードで運用コマンド「show sp」の実行を促すメッセージが出力されます。 ・ライセンスの追加により有効期間が延長されるまで、プロンプトに毎回メッセージを出力します。	・プロンプトに以下のメ ッセージが出力されま す。 You have warning messages. Use "show sp" to see them.
3	運用コマンド	・運用コマンド「show sp」の WARNING 情報にライセンス失効のメッセージが出力されます。 ・ライセンスの追加により有効期間が延長されるまで、WARNING 情報に毎回メッセージを出力します。	・メッセージ内容は 「AX-Sensor コマンド・ ログレファレンス」の運 用コマンド「show sp」 および「表 1.2-5 show spで表示される(2)の WARNING 一覧」を参照し てください。

ライセンス失効で使用不可となる機能を以下に示します。

表 4.4-5 ライセンス失効で使用不可となる機能

#	機能	内容	備考
1	NetFlow Exporter 機能	NetFlow Data FlowSet パケットの送信 を停止します。	NetFlow Template FlowSet パケットは継続 して送信します。

4.5 ログインユーザの設定

この節では、ログインユーザの設定について説明します。

4.5.1 ログインユーザのパスワード変更

ログインユーザのパスワード変更は運用コマンド「edit system users」で行います。作成例を次の図 に示します。

図 4.5-1 ログインユーザのパスワード変更

SP#	(1)
SP# edit system users	(2)
[SP-system:users] user admin	(3)
[SP-system:users-test] password	(4)
New password:	(5)
Retype new password:	(6)
[SP-system:users-test] save	(7)
SP#	

25#

- (1) 装置管理者モードでログインします。
- (2) 運用コマンド「edit system users」を実行します。
- (3) 運用コマンド「user」でパスワード変更するログインユーザ名を設定します。
- (4) 運用コマンド「password」でパスワード入力に遷移します。
- (5) 変更するパスワードを入力します。 (入力したパスワードは表示されません)
- (6) 再度,変更するパスワードを入力します。 (入力したパスワードは表示されません)
- (7) 運用コマンド「save」で上記(4)により設定したパスワードを反映します。

注意事項

・本装置では admin 権限のパスワードを誤って設定または消失・紛失した場合、ログインユーザの初 期化ができません。セキュリティ上 admin 権限および operator 権限のログインユーザにはパスワー ドを設定し、パスワードを厳重に管理してください。

4.5.2 ログインユーザの作成および削除

ログインユーザの作成および削除は運用コマンド「edit system users」で行います。作成例を次の図に示します。

図 4.5-2 ログインユーザの作成

SP#		(1)
SP# edit system users		(2)
[SP-system:users] user	test	(3)
[SP-system:users-test]	password	(4)
New password:		(5)
Retype new password:		(6)
[SP-system:users-test]	group admin	(7)
[SP-system:users-test]	userid 1234	(8)
[SP-system:users-test]	save	(9)
SP#		

- (1) 装置管理者モードでログインします。
- (2) 運用コマンド「edit system users」を実行します。
- (3) 運用コマンド「user」で作成するログインユーザ名を設定します。
- (4) 運用コマンド「password」でパスワード入力に遷移します。
- (5) 変更するパスワードを入力します。 (入力したパスワードは表示されません)
- (6) 再度,変更するパスワードを入力します。(入力したパスワードは表示されません)
- (7) 運用コマンド「group」で作成するログインユーザadminまたはoperatorの権限を設定します。デフォルトはoperatorが設定されています。
- (8) 運用コマンド「userid」で作成するログインユーザのuseridを設定します。useridを設定しない 場合はログインユーザ作成時に自動で割り当てられます。
- (9) 運用コマンド「save」で上記(3) \sim (6)の設定内容を反映したログインユーザを作成します。

注意事項

・作成したログインユーザのgroupおよびuseridの変更はできません。変更を行う場合は一度ログイン ユーザを削除した後にログインユーザを再度作成してください。

図 4.5-3 ログインユーザの削除

SP#	(1)
SP# edit system users	(2)
[SP-system:users] delete user test	(3)
[SP-system:users] save	(4)
SP#	

- (1) 装置管理者モードでログインします。
- (2) 運用コマンド「edit system users」を実行します。
- (3) 運用コマンド「delete user」で削除するログインユーザ名を設定します。
- (4) 運用コマンド「save」で上記(3)により設定したログインユーザを削除します。

4.5.3 ログインユーザの初期化

ログインユーザの初期化は運用コマンド「erase users」で行います。初期化例を次の図に示します。

図 4.5-4 ログインユーザの初期化

SP#	(1)
SP# erase users	(2)
WARNING: Do you wish to erase users information? (y/n) : $[n]$: y	(3)
SP# reload	(4)
WARNING: Are you sure to restart system(y/n)? [n]: y	(5)
SP#	

- (1) 装置管理者モードでログインします。
- (2) 運用コマンド「erase users」を実行します。
- (3) ログインユーザ初期化の承諾確認で y を入力します。
- (4) 運用コマンド「reload」で本装置の再起動を実施します。
- (5) 装置再起動の承諾確認で y を入力します。

注意事項

・ログインユーザの初期化は装置再起動後に反映されます。

4.6 CLIでの操作

この節では、CLI での操作について説明します。

4.6.1 補完機能

コマンドライン上で[Tab]キーを入力することで、コマンド入力時のコマンド名称やファイル名の入力を少なくすることができ、コマンド入力が簡単になります。補完機能を使用したコマンド入力の簡略化を以下に示します。

補完機能を使用したコマンド入力の簡略化の例

[SP-netflow] net[Tab]

[SP-netflow] netflow

コマンド入力後に[Tab]キーを入力した場合では、使用できるパラメータやファイル名の一覧を表示します。

補完機能を使用した、指定可能パラメーター覧表示の例

[SP-netflow] netflow [Tab]

ipv4 mac

[SP-netflow] netflow

注意事項

・入力できない選択肢を表示する場合があります。「コマンド・ログレファレンス」の各コマンドの入 力形式と入力範囲をご確認ください。

4.6.2 ヘルプ機能

コマンドライン上で[?]を入力することで、指定できるコマンドまたはパラメータを検索できます。また、コマンドやパラメータの意味を知ることができます。[?]入力時の表示例を以下に示します。

[?]入力時の表示例

SP> show interface [?]

Valid entries at this position are:

<Enter> Execute command

INTERFACE Interface name

SP> show interface

注意事項

- ・<>のないパラメータ名を表示する場合があります。
- ・入力できない選択肢を表示する場合があります。「コマンド・ログレファレンス」の各コマンドの入 力形式と入力範囲をご確認ください。

4.6.3 入力エラー指摘機能

コマンドまたはパラメータを不正に入力した際,エラー位置を「[^]」で指摘して,次行にエラーメッセージを表示します。[?]入力時も同様の表示となります。

「「」の指摘個所とエラーメッセージの説明によって、コマンドまたはパラメータを見直して再度入力してください。入力エラー位置指摘の表示例を次に示します。

入力エラー位置指摘の表示例

[SP-netflow] netflow notip

String error: invalid string

Valid entries at this position are:

ipv4 Netflow MAC-IPv4 function

mac Netflow MAC function

[SP-netflow]

4.6.4 コマンド短縮実行

コマンドまたはパラメータを短縮して入力された文字が一意のコマンドまたはパラメータとして特定 できる場合, コマンドを実行します。短縮入力のコマンド実行例を次に示します。

短縮入力のコマンド実行例(show netflow statistics の短縮入力)

SP# show netflow [3	?]				
statistics status					
SP# show netflow st	tati				
Date 20XX/08/20 12:	:07:54 UTC				
Total					
Received Packets	:	0	Received Bytes	:	0
Error Packets	:	0			
IPv4					
Flow Entries	:	0	Received Packets	:	0
Expired Flows	:	0	Ignored Packets	•	0
Overflow Packets	:	0	Discard Flows	:	0
Fragments	:	0			
MAC					
Flow Entries	:	0	Received Packets	:	0
Expired Flows	:	0	Ignored Packets	:	0
Overflow Packets	:	0	Discard Flows	:	0
SP#					
複数のパラメータ(この SP# show net stati)場合 netflow,	statistio	cs) を同時に短縮可能	能です。	
Date 20XX/08/20 12:	:07:54 UTC				
Total					
Received Packets	:	0	Received Bytes	:	0
Error Packets	:	0	•		
IPv4					
Flow Entries	:	0	Received Packets	:	0
Expired Flows	:	0	Ignored Packets	:	0
Overflow Packets	:	0	Discard Flows	:	0
Fragments	:	0			
MAC					
Flow Entries	:	0	Received Packets	:	0
Expired Flows	:	0	Ignored Packets	:	0
Overflow Packets	:	0	Discard Flows	:	0
SP#					

4.6.5 ヒストリ機能

ヒストリ機能を使用すると,過去に入力したコマンドを簡単な操作で再実行したり,過去に入力したコマンドの一部を変更して再実行したりできます。ヒストリ機能を使用した例を次に示します。

ヒストリ機能を使用したコマンド入力の簡略化の例

> ping 192.168.100.2 count 1 ...(1) PING 192.168.100.2 (192.168.100.2): 120 data bytes 128 bytes from 192.168.100.2: icmp seq=0 ttl=128 time=0 ms ----192.168.100.2 PING Statistics----1 packets transmitted, 1 packets received, 0.0% packet loss round-trip min/avg/max = 0/0/0 ms > ...(2) > ping 192.168.100.2 count 1 ... (3) PING 192.168.100.2 (192.168.100.2): 120 data bytes 128 bytes from 192.168.100.2: icmp seq=0 ttl=128 time=0 ms ----192.168.100.2 PING Statistics----1 packets transmitted, 1 packets received, 0.0% packet loss round-trip min/avg/max = 0/0/0 ms ... (4) > ping 192.168.100.3 count 1 \cdots (5) PING 192.168.100.3 (192.168.100.3): 120 data bytes 128 bytes from 192.168.100.3: icmp_seq=0 ttl=128 time=0 ms ----192.168.100.3 PING Statistics----1 packets transmitted, 0 packets received, 100.0% packet loss >

- (1) 192.168.100.2 に対して ping コマンドを実行します。
- (2) $[\uparrow]$ キーを入力することで前に入力したコマンドを呼び出せます。この例の場合, $[\uparrow]$ キーを 1 回押すと「ping 192.168.100.2 count 1」を表示しますので,[Enter] キーの入力だけで同じコマンドを再度実行できます。
- (3) 192.168.100.2 に対して ping コマンドを実行します。

- (4) [↑] キーを入力することで前に入力したコマンドを呼び出し、[←] キーおよび [Backspace] キーを使ってコマンド文字列を編集できます。この例の場合、 [↑] キーを1回押すと「ping 192.168.100.2 count 1」を表示しますので、IP アドレスの「2」の部分を「3」に変更して[Enter] キーを入力しています。
- (5) 192.168.100.3 に対して ping コマンドを実行します。

4.6.6 ページング

コマンドの実行により出力される結果について、表示すべき情報が一画面にすべて表示しきれない場合は、ユーザのキー入力を契機に一画面ごとに区切って表示します。なお、ページングは運用コマンド「pager」でその機能を有効にしたり無効にしたりできます。

4.6.7 キーボードコマンド機能

端末アプリケーションおよび端末の設定により、使用可能なキーが異なります。本装置では、VT100 で 仕様が明確になっているキーを使用した表 4.6-1 の組み合わせでの操作を推奨します。

表 4.6-1 推奨キーボードコマンド

キーボード	説明
Backspace	カーソルの左の1文字を削除します。 (ただし行の先頭まで)
Ctrl + A	コマンド行の先頭へ移動します。
Ctrl + B	1文字戻ります。 (ただし行の先頭まで)
Ctrl + C	コマンドを中断します。
Ctrl + D	1 文字削除します。
Ctrl + E	コマンド行の行末へ移動します。
Ctrl + F	1文字進みます。 (ただし行の終わりまで)
Ctrl + L	コンソール画面をリフレッシュし、画面上のコマンド入力行以外は表示を消去します。
Ctrl + N	カレントコマンドまで次のヒストリを表示します。
Ctrl + P	一つ前のヒストリを表示します。
Ctrl + U	カーソル行のテキストを削除します。
Ctrl + W	カーソルより前方のテキストを削除します。
Ctrl + K	カーソルの後ろのテキストを削除します。
Ctrl + T	カレントの文字と前の文字を交換します。
Esc + B	1語戻ります。
Esc + F	1 語進みます
Esc + D	語のカーソルから後ろを削除します。

4.6.8 CLI設定のカスタマイズ

自動ログアウト機能やCLI機能の一部は、CLI環境情報としてユーザごとに動作をカスタマイズできます。カスタマイズできるCLI機能とCLI環境情報を表 4.6-2に示します。

表 4.6-2 カスタマイズできる CLI 機能と CLI 環境情報

機能	カスタマイズ内容と初期導入時のデフォルト設定
ページング	ページングするかどうかを設定できます。 ログイン時のデフォルト設定では,ページングを行いません。

ページングの有効/無効は、運用コマンド「pager」で設定できます。

設定内容は、コマンドが実行された直後から動作に反映されます。

4.7 コンフィグレーション

この節では、コンフィグレーションについて説明します。

4.7.1 コンフィグレーションの運用

起動時に読み込まれるコンフィグレーションをスタートアップコンフィグレーションと呼び、運用に 使用されるコンフィグレーションをランニングコンフィグレーションと呼びます。

本装置の電源を入れると、内蔵フラッシュメモリ上のスタートアップコンフィグレーションファイルが読み出され、そのままランニングコンフィグレーションとして設定されて運用を開始します。

コンフィグレーションを編集,確定した場合は、ランニングコンフィグレーションが書き換えられ、運用に反映されます。変更したランニングコンフィグレーションは運用コマンド「copy conf running start」を使用することで、スタートアップコンフィグレーションに保存することが可能です。

編集した内容を保存しないで本装置を再起動すると、編集した内容は失われるので注意してください。

4.7.2 コンフィグレーションの編集

コンフィグレーションの編集について説明します。各コマンドの詳細については「コマンド・ログレファレンス」を参照してください。

(1) 編集可能なコマンドモード

コンフィグレーションの編集を行う場合は、装置管理者モードでログインし、configure コマンドを実行してください。プロンプトが[SP]になるとコンフィグレーションコマンドモードとなり、ランニングコンフィグレーションの編集が可能となります。

(2) コンフィグレーションの表示・確認

一般ユーザモードおよび装置管理者モードでコマンド「display conf running」および「display conf start」を実行することで、それぞれランニングコンフィグレーション、スタートアップコンフィグレーションを表示・確認することができます。

コンフィグレーションコマンドモードでコマンド「display」を実行した場合は、現在編集中の内容が表示されます。運用中の内容とは異なる可能性があるので注意してください。

(3) コンフィグレーションの編集

コンフィグレーションコマンドを使用して、コンフィグレーションを編集します。また、コンフィグレーションの削除は、コマンドの先頭に「delete」を指定することで実現できます。

(4) コンフィグレーションの確定

編集したコンフィグレーションを反映させるにはコマンド「addrunning」で確定する必要があります。確定させるまではランニングコンフィグレーションに反映されることはなく,運用状態にも変化はありません。

コマンド「addrunning」で確定せずにコンフィグレーションコマンドモードを終了すると設定した内容は全て消えてしまいます。その場合には終了時に終了してよいか確認の警告が表示されます。yを入力するとそのまま終了し,nを入力すると終了せずにコンフィグレーションコマンドモードに戻ります。

コマンド「addrunning」を実行せずにコンフィグレーションコマンドモードを終了した場合に 表示されるメッセージ

[SP] exit

WARNING: Modifications will be lost. Are you sure to exit (y/n)? [n]: n

[SP] exit

WARNING: Modifications will be lost. Are you sure to exit (y/n)? [n]: y SP#

(5) コンフィグレーションの保存

運用コマンド「copy conf running start」を使用することで、ランニングコンフィグレーションがスタートアップコンフィグレーションファイルに保存されます。編集した内容を保存しないで装置を再起動すると、編集した内容が失われるので注意してください。

なお保存するにはコマンド実行時に出力される確認のメッセージに対して,以下のように 2 回「y」を入力します。

SP# copy conf running start

WARNING: Do you really want to overwrite the start configuration (y/n)? [n]: y

WARNING: start already exists. Do you want to overwrite it (y/n)? [n]: y

(6) コンフィグレーションの編集終了(exit コマンド)

コンフィグレーションの編集を終了する場合は、コンフィグレーションコマンドモードの最上位の階層で exit コマンドを実行します。

注意事項

- ・本装置が運用コマンド「show sp」でStatus が in service になる前には、コンフィグレーション関連のオペレーションに関して以下の注意をお願いします。
- ・コマンド「display」でコンフィグレーションを表示しても、正しく表示されない場合があります。
- ・コンフィグレーションを編集しても編集内容が失われる場合があります。
- ・運用コマンド「show sp」で Status が in service となっていることを確認してから、コンフィグレーション関連のオペレーションを開始してください。

4.7.3 コンフィグレーションのエクスポート

編集したコンフィグレーションのバックアップを取りたい場合などは、運用コマンド「export conf」を使用してコンフィグレーションファイルのエクスポートが可能です。

ネットワークを経由してエクスポート

コマンド「export conf」のパラメータに URL を指定することでネットワーク経由でのエクスポートを実施します。ftp(または tftp)を利用してのファイル転送ですので、エクスポート先となる機器で ftp(または tftp)サーバが起動している必要があります。

※本装置の ftp/tftp サーバは起動していないため、外部から本装置への ftp/tftp 接続はできません。

注意事項

・エクスポート可能なコンフィグレーションは、スタートアップコンフィグレーション「start」また はランニングコンフィグレーション「running」です。

4.7.4 コンフィグレーションのインポート

バックアップしていたコンフィグレーションファイルを取り込んで再運用したい場合などは、運用コマンド「import conf」を使用してコンフィグレーションファイルのインポートが可能です。

ネットワークを経由してインポート

コマンド「import conf」のパラメータに URL を指定することでネットワーク経由でのインポートを実施します。ftp(または tftp)を利用してのファイル転送ですので、インポート元となる機器で ftp(または tftp)サーバが起動している必要があります。

※本装置の ftp/tftp サーバは起動していないため、外部から本装置への ftp/tftp 接続はできません。

インポート後,運用コマンド「reload」で本装置を再起動することでインポートしたコンフィグレーションでの運用が開始されます。

注意事項

・インポートするコンフィグレーションファイルは、スタートアップコンフィグレーションのみを対象 としますので、コマンド「import conf」のパラメータであるインポート先のファイル名は、必ず「start」 とする必要があります。元のファイル名が「start」である場合はインポート先のファイル名は指定 する必要ありません。

4.7.5 コンフィグレーションの初期化

コンフィグレーションの初期化は運用コマンド「erase configuration」で行います。初期化例を次の図に示します。

図 4.7-1 コンフィグレーションの初期化

SP#	(1)
SP# erase configuration startup	(2)
WARNING: Do you wish to erase startup-config? (y/n) : $[n]$: y	(3)
SP# reload	(4)
WARNING: Are you sure to restart system(y/n)? [n]: y	(5)
SP#	

- (1) 装置管理者モードでログインします。
- (2) 運用コマンド「erase configuration startup」を実行します。
- (3) コンフィグレーション初期化の承諾確認で y を入力します。
- (4) 運用コマンド「reload」で本装置の再起動を実施します。
- (5) 装置再起動の承諾確認で y を入力します。

注意事項

・コンフィグレーションの初期化は装置再起動後に反映されます。

4.8 telnet/ssh によるログイン

通信用ポートを介して、リモート運用端末から本装置へログインするには、本装置で IP アドレスの設定が必要です。ただし、初期導入時には IP アドレスの設定が行われていません。そのため、コンソールからログインして、コンフィグレーションを設定する必要があります。

telnet によるログインを可能とするには本装置のマネジメントポートの IP アドレスを設定する必要 があります。telnet サーバは本装置の起動時に自動で起動しますので,他に必要な設定はありません。

ssh によるログインを可能とするには、更に本装置の ssh サーバを有効化する必要があります。5.7.1 節「コンフィグレーション」を参照ください。

以下にインタフェース(eth1)への IP アドレスの設定例を示します。

インタフェース (eth1) への IP アドレスの設定例

SP# config	gure	(1)
[SP] eth1		(2)
[SP-eth1]	ipaddress 192.168.100.100/24	(3)
[SP-eth1]	addrunning	(4)
[SP-eth1]	display	(5)

- (1) 装置管理者モードでログインし、コマンド「configure」でコンフィグレーションコマンドモードへと切り替わります。
- (2) eth1 に入ります。
- (3) コマンド「ipaddress」で任意の IP アドレスを設定します。
- (4) コマンド「addrunning」で反映します。
- (5) コマンド「display」で設定内容を表示して確認します。

4.9 ftpによるログイン

本装置では一部運用コマンドでのみ ftp クライアント機能によるファイル転送を提供しています。

表 4.9-1 ftp を利用したファイル転送コマンド一覧

コマンド名	コマンド説明
export dump-file	解析情報ファイルを収集し、指定された転送先へ転送します。
export conf	コンフィグレーションファイルをエクスポートします。
import conf	コンフィグレーションファイルをインポートします。
export log-session	本装置で収集しているログファイルをエクスポートします。
update	ソフトウェアを取得しアップデートします。

4.10 ソフトウェアのアップデート

この節ではソフトウェアのアップデートについて説明します。

4.10.1 ソフトウェアのアップデート

ソフトウェアのアップデートとは、旧バージョンのソフトウェアから新バージョンのソフトウェアに バージョンアップすることを指します。アップデートを実施するには装置管理者モードで、運用コマン ド「update」を実行します。

アップデート時,装置管理のコンフィグレーション,ユーザ情報(ログインアカウント,パスワードなど)およびライセンス情報はそのまま引き継がれます。

アップデートを実施するには以下の方法があります。

(1) ネットワーク経由でアップデートファイルを入手してアップデートする

コマンド「update」でアップデートファイルの入手先に URL を指定して実行することで,アップデートを行います。ftp(または tftp)を利用してのファイル転送を行うので,入手先となる機器で ftp(または tftp)サーバが起動している必要があります。

アップデート後,運用コマンド「reload」で本装置を再起動することで新しいソフトウェアでの運用が 開始されます。自動で装置再起動は行いませんのでご注意ください。

なお、バージョンダウンする場合、未サポートになるコンフィグレーションはあらかじめ削除してください。未サポートのコンフィグレーションを削除しないでバージョンダウンを実行した場合、意図しないネットワーク構成や動作となるおそれがあります。

4.10.2 装置内バックアップ

装置内バックアップとは、現在動作しているソフトウェアを装置内に 1 世代分のバックアップを行うことで、スタートアップ面とバックアップ面の 2 面でソフトウェア管理が行えます。

スタートアップ面からバックアップ面へのバックアップだけでなく、バックアップしたソフトウェアをリストアすることも可能です。

以下にバックアップおよびリストアの手順を示します。

(1) スタートアップ面からバックアップ面へのバックアップ

- 1. 装置管理者モードでログインしてください。
- 2. 運用コマンド「copy lm start」を実行してください。スタートアップ面をバックアップ面にコピーします。
- 3. 運用コマンド「show version」でF/Wの「Backup」に「Startup」と同じソフトウェアバージョン情報が示されていることを確認してください。

(2) バックアップ面からスタートアップ面へのリストア

- 1. 装置管理者モードでログインしてください。
- 2. 運用コマンド「copy lm backup」を実行してください。バックアップ面をスタートアップ面に コピーします。
- 3. 運用コマンド「show version」で F/W の「Startup」に「Backup」と同じソフトウェアバージョン情報が示されていることを確認してください。
- 4. 運用コマンド「reload」で装置を再起動してください。リストアしたソフトウェアで運用を開始します。

4.11 装置管理機能

この節では、本装置の管理を行う機能について説明します。

4.11.1 LEDと本装置の状態

本装置はLEDの表示により装置の状態をお知らせします。 次にLEDの表示内容について示します。

表 4.11-1 LED の表示内容

名称	種類	状態		内容
PWR	LED:緑	電源の投入状態を示します。	緑点灯	電源0N
			消灯	電源OFF, または電源異常
ST1	LED:緑/赤	装置の状態を示します。	緑点灯	動作可能
			緑点滅	準備中(立ち上げ中),または終了
				処理中
			赤点滅	装置の部分障害発生 (警報)
			赤点灯	装置の致命的障害発生(継続使用不
				可)
			消灯	電源OFF, または電源異常
ST2	LED:緑/赤	装置の状態を示します。	緑点灯	動作可能
			緑点滅	ソフトウェア更新中、または終了処
				理中
			赤点滅	装置の部分障害発生 (警報)
			赤点灯	装置の致命的障害発生(継続使用不
				可)
			消灯	電源OFF, または電源異常

4.11.2 障害監視

本装置で発生するハードウェア、およびソフトウェアの障害を検知します。

障害,警報が発生した場合には,LEDによる通知,syslogへの障害情報の出力,本装置の再起動を状態に合わせて実施します。

障害が連続で発生した場合には、通常起動しているソフトウェアとは別の、バックアップされているソフトウェアを起動します。それでも正常起動しなかった場合には、本装置は停止します。

バックアップ方法については4.10.2節「装置内バックアップ」を参照して下さい。

(1) 電源ユニット/ファンの監視

電源で異常(温度異常または故障)を検知した場合に再起動を実施します。

表 4.11-2 電源ユニット/ファンの状態と動作一覧

装置の状態	運用の継続	動作
電源異常	×	運用メッセージを出力,および syslog サーバへ出力を行います。 再起動を行います。
ファン停止	0	運用メッセージを出力,および syslog サーバへ出力を行います。

(凡例)○:継続可能。×:継続不可。

(2) 温度監視

本装置の温度が70℃以上で再起動を実施します。

表 4.11-3 本装置の温度と動作一覧

装置の状態	運用の継続	動作
異常高温(70℃以上)	×	運用メッセージを出力,および syslog サーバへ出力を行います。 再起動を行います。
低温警報(0℃以下)	0	運用メッセージを出力,および syslog サーバへ出力を行います。
低温復旧(5℃以上)	0	運用メッセージを出力,および syslog サーバへ出力を行います。
高温警報(50℃以上)	0	運用メッセージを出力、および syslog サーバへ出力を行います。
高温復旧(45℃以下)	0	運用メッセージを出力,および syslog サーバへ出力を行います。

(凡例)○:継続可能。×:継続不可。

(3) メモリ残量監視

メモリの使用量を監視し、未使用メモリが5%以下となった場合に警告をログに出力し、再起動は実施しません。

表 4.11-4 メモリ残量と動作一覧

装置の状態	運用の継続	動作
メモリ残量警報	0	運用メッセージを出力,および syslog サーバへ出力を行います。
メモリ残量復旧	0	運用メッセージを出力,および syslog サーバへ出力を行います。

(凡例)○:継続可能。×:継続不可。

(4) その他の障害

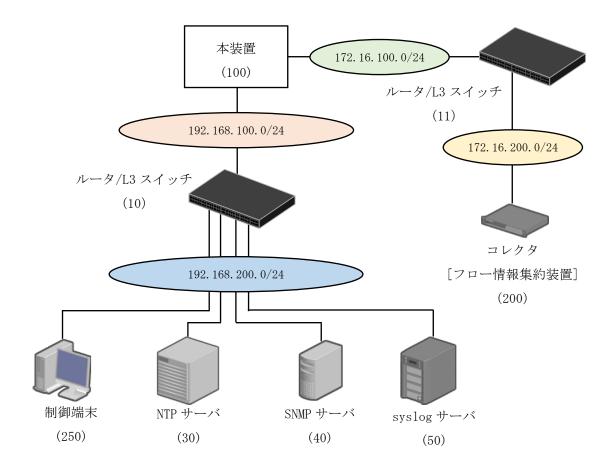
表 4.11-5 その他の障害と動作一覧

装置の状態	運用の継続	動作
ハードウェア重度障害	×	運用メッセージを出力,および syslog サーバへ出力を行います。 再起動を行います。
ハードウェア軽度障害	0	運用メッセージを出力,および syslog サーバへ出力を行います。
ハードウェア軽度障害連続発生 (1 分間に3回発生)	×	運用メッセージを出力,および syslog サーバへ出力を行います。 再起動を行います。
ソフトウェア障害	×	運用メッセージを出力,および syslog サーバへ出力を行います。 再起動を行います。

(凡例)○:継続可能。×:継続不可。

5

ネットワーク機能


この章では、ネットワーク機能について説明します。

- 5.1 ネットワーク構成例
- 5.2 インタフェース設定
- 5.3 syslog 出力
- 5.4 SNMP
- 5.5 スタティックルーティング
- 5.6 NTP クライアント
- 5.7 その他の装置関連情報

5.1 ネットワーク構成例

本章で説明する設定内容は、次に示すネットワーク構成例の図を前提としています。

図 5.1-1 ネットワーク構成例

※カッコ内はネットワークのホスト番号を示す。

5.2 インタフェース設定

物理インタフェースの設定を説明します。

注意事項

・リンクアグリゲーションやVLANの設定はできません。

5.2.1 コンフィグレーション

インタフェース設定のコンフィグレーション設定例を次に示します。

図 5.2-1 インタフェース設定例

SP# configure

[SP] eth1 \cdots (1) [SP-eth1] ipaddress 192.168.100.100/24 \cdots (2) [SP-eth1] addrunning \cdots (3) [SP-eth1] display \cdots (4)

- # INTERFACE STATEMENTS
- **# IPV4 STATEMENTS**
- # IPV4 ADDRESSES ipaddress 192.168.100.100/24
- **# IPV6 STATEMENTS**
- # IPV6 ADDRESSES
- # IPV6 PREFIXES
- # ETHERNET STATEMENTS
- (1) インタフェースethlを有効化します。
- (2) IPv4アドレスを設定します。
- (3) コンフィグレーション設定を反映します。
- (4) コンフィグレーション設定を表示します。

5.2.2 オペレーション

インタフェース設定に関連する運用コマンドを次に示します。

(1) show interface

コンフィグレーションで設定したIPアドレスを表示します。

SP# show interface

vrf0

eth1: <BROADCAST, MULTICAST, UP, LOWER_UP> mtu 1500 qdisc noqueue state UP group default link/ether 00:12:e2:95:c8:51 brd ff:ff:ff:ff:ff:ff:inet 192.168.100.100/24 brd 192.168.100.255 scope global eth1 valid_lft forever preferred_lft forever

(2) show interface 〈物理インタフェース名〉 statistics detail インタフェースの統計情報を表示します。

SP# show interface eth1 statistics detail statistics:

Kernel Interface table

Iface MTU RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg eth1 1500 175 0 0 0 5 0 0 0 BMRU

RX: bytes packets errors dropped overrun mcast 16942 175 0 0 0 7

TX: bytes packets errors dropped carrier collsns 490 5 0 0 0 0

RX rate : Obps(O.OMbps) Opps(O.Okpps) TX rate : Obps(O.OMbps) Opps(O.Okpps)

5.3 syslog出力

運用メッセージのsyslog出力設定について説明します。

5.3.1 コンフィグレーション

syslog出力設定のコンフィグレーション設定例を次に示します。

図 5.3-1 syslog 出力設定例

SP# configure

[SP] log

[SP-log] log-session SYSLOG remote 192.168.200.50 \cdots (1)

[SP-log] log mng SYSLOG info \cdots (2)

[SP-log] addrunning \cdots (3)

[SP-log] display \cdots (4)

LOG SESSIONS

log-session MNG local 2 MB

log-session NTP local 512 KB

log-session SNMP local 512 KB

log-session SYSLOG remote 192.168.200.50

SERVICES LOG SESSIONS

log mng SYSLOG info

log ntp NTP info

log snmp SNMP info

DAEMONS LOG SESSIONS

- (1) syslog出力設定を行う任意の文字列(SYSLOG)およびsyslogサーバ宛先を設定します。
- (2) syslog出力設定を行う任意の文字列(SYSLOG)にsyslogサーバへ出力するメッセージ内容を設定します。
- (3) コンフィグレーション設定を反映します。
- (4) コンフィグレーション設定を表示します。

注意事項

- ・複数のsyslogサーバ宛先の設定を行えますが、最大4つとなります。
- ・syslog出力データのヘッダ部に付けるfacilityには常に「local0」を使用します。

5.3.2 オペレーション

syslog設定に関連する運用コマンドを次に示します。

(1) show log-session MNG

装置内に保存している運用メッセージを表示します。

SP# show log-session MNG

Sep 12 08:57:02 SP MNG: spmd-INF0 EVT NIF:00 20012010 Initialization started. Sep 12 08:57:03 SP MNG: spmd-INF0 EVT NIF:00 23024011 Initialization is complete. Sep 12 08:57:14 SP MNG: ----INF0 KEY NIF:00 00000000 admin: display conf running

5.4 SNMP

SNMP設定について説明します。

5.4.1 コンフィグレーション

SNMPのコンフィグレーション設定例を次に示します。

図 5.4-1 SNMP 設定例

 SP# configure

 [SP] snmp

 [SP-snmp] snmp enable
(1)

 [SP-snmp] rocommunity public 192.168.200.40/24
(2)

 [SP-snmp] authtrap enable
(3)

 [SP-snmp] trap2sink 192.168.200.40 public
(4)

 [SP-snmp] addrunning
(5)

 [SP-snmp] display
(6)

SNMP STATEMENTS

snmp enable sysdescr none authtrap enable

COMMUNITIES

rocommunity public 192.168.200.40/24

TRAPS

trap2sink 192.168.200.40 public

- **# SYSTEM**
- # LOG SERVICE

log snmp SNMP info

- (1) SNMP機能を有効化します。
- (2) 読み取り可能なコミュニティを設定します。
- (3) Authentication Failure Trap機能を有効化します。
- (4) Trap機能を有効化し、出力先を設定します。
- (5) コンフィグレーション設定を反映します。
- (6) コンフィグレーション設定を表示します。

5.5 スタティックルーティング

スタティックルーティング設定について説明します。

5.5.1 コンフィグレーション

スタティックルーティングのコンフィグレーション設定例を次に示します。

図 5.5-1 スタティックルーティング設定例

SP# configure

[SP] rtg

[SP-rtg] route default-ipv4 192.168.100.10 ...(1)
[SP-rtg] route 172.16.200.0/24 172.16.100.11 ...(2)
[SP-rtg] addrunning ...(3)
[SP-rtg] display ...(4)

IPV4 ROUTES

route default-ipv4 192.168.100.10 route 172.16.200.0/24 172.16.100.11

- # IPV6 ROUTES
- # LOG SERVICE
- # GLOBAL INFO
- # ACCESS LIST & PREFIX LIST
- # COMMUNITY-LIST & EXTCOMMUNITY-LIST
- # ROUTE-MAPS
- # INTERFACES
- # DYNAMIC ROUTING
- (1) デフォルトゲートウェイを設定します。
- (2) 宛先プレフィックス指定を設定します。
- (3) コンフィグレーション設定を反映します。
- (4) コンフィグレーション設定を表示します。

5.5.2 オペレーション

ルーティング設定に関連する運用コマンドを次に示します。

(1) show ip route

ルーティングテーブル情報を表示します。

SP# show ip route

Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, P - PIM, A - Babel, M - SMR, > - selected route, * - FIB route

S>* 0.0.0.0/0 [1/0] via 192.168.100.10, eth1

C>* 127.0.0.0/8 is directly connected, lo

C>* 172.16.100.0/24 is directly connected, eth2

S>* 172.16.200.0/24 [1/0] via 172.16.100.11, eth2

C>* 192.168.100.0/24 is directly connected, eth1

5.6 NTPクライアント

NTPクライアント設定について説明します。

5.6.1 コンフィグレーション

NTPクライアントのコンフィグレーション設定例を次に示します。

図 5.6-1 NTP クライアント設定例

```
SP# configure
[SP] ntp
[SP-ntp] ntp enable
                                          ...(1)
[SP-ntp] remoteserver 192.168.200.30
                                          ...(2)
[SP-ntp] addrunning
                                          ...(3)
[SP-ntp] display
                                          ... (4)
   # NTP STATEMENTS
     ntp enable
     default-version 4
     default-polling 8
   # REMOTE SERVERS
     remoteserver 192.168.200.30 version 4
   # LOG SERVICE
     log ntp NTP info
```

- (1) NTPクライアント機能を有効化します。
- (2) 接続先のNTPサーバを設定します。
- (3) コンフィグレーション設定を反映します。
- (4) コンフィグレーション設定を表示します。

5.6.2 オペレーション

NTPクライアント設定に関連する運用コマンドを次に示します。

(1) show ntp associations

接続されているNTPサーバの動作状態を表示します。

SP# show ntp associations

remote	refid	st t w	hen	poll	reach	delay	offset	jitter
192. 168. 200. 30	======================================	====== 1 u	==== 11	===== 256	====== 1	 0. 826	-0. 243	0. 004

5.7 その他の装置関連情報

ホスト名,タイムゾーン,リモートアクセスなどの設定について説明します。

5.7.1 コンフィグレーション

ホスト名,タイムゾーン,リモートアクセスなど,その他の装置関連情報のコンフィグレーション設定例を次に示します。

図 5.7-1 その他の装置関連情報の設定例

```
SP# configure
[SP] gen
[SP-gen] hostname AX-Sensor
                                                     ...(1)
                                                     ...(2)
[SP-gen] clock timezone JST 9
[SP-gen] ssh enable
                                                     ...(3)
[SP-gen] system temperature-warning-level 40
                                                     ... (4)
[SP-gen] addrunning
                                                     ... (5)
[AX-Sensor-gen] display
                                                     ... (6)
    # GEN STATEMENT
     hostname AX-Sensor
     clock timezone JST 9
      telnet enable
      ssh enable
      icmp limit rate 1000
      icmp limit type unreach quench redirect time_exceed param_prob
      system temperature-warning-level 40
   # ARP TABLE
   # NDP TABLE
   # HOST
   # LOG
```

- (1) ホスト名を設定します。
- (2) タイムゾーンをJSTに設定します。
- (3) sshサーバを有効化します。
- (4) 運用メッセージで警告する装置の入気温度を設定します。
- (5) コンフィグレーション設定を反映します。
- (6) コンフィグレーション設定を表示します。

5.7.2 オペレーション

装置関連情報に関連する運用コマンドを次に示します。

(1) show date

タイムゾーンを含めた日時情報を表示します。

AX-Sensor# show date

Wed 12 Sep 20XX 18:20:54 JST +0900 (Asia/Tokyo)

(2) show service

telnet/sshなどのリモートアクセス機能の稼動状況を表示します。

AX-Sensor# show service

Service TELNET is active
Service SSH is active
Service SNMP is inactive
Service NTP is inactive

(3) show environment temperature-logging

装置の温度履歴情報を表示します。

AX-Sensor# show environment temperature-logging

Date 20XX/05/31 15:00:00 JST

Date 0:00 6:00 12:00 18:00

20XX/05/31 24.3 24.2 26.0

20XX/05/30 21.8 25.1 26.0 24.0 20XX/05/29 25.6 - 26.0 24.0

6

センサ機能

この章では、センサ機能について説明します。

6.1 解説

6.2 コンフィグレーション

6.1 解説

センサ機能は、ネットワーク上を流れるトラフィックを把握する技術の一つです。 NetFlow Exporter機能では、モニタポート、センサ出力ポート、マネジメントポートの各ポート機能に特化した処理を行うことで実現します。

6.1.1 モニタポート

モニタポートは観測対象ネットワークからミラーリングされたトラフィックを受信する専用ポートです。観測対象ネットワークにジャンボフレームが含まれている場合,mtuの値を大きくすることを推奨します。

モニタポートにはDeny-Filter機能が設定可能です。Deny-Filter機能の詳細は「6.1.4.6 Deny-Filter機能」を参照してください。

注意事項

・モニタポートにはIPアドレスの設定をしないでください。

6.1.2 センサ出力ポート

センサ出力ポートはNetFlow情報を出力するためのポートです。NetFlow情報の出力先装置と直接接続する必要はなく、センサ出力ポートとの間にルータやスイッチを介しての接続が可能です。

注意事項

・センサ出力ポートはマネジメントポートと併用が可能です。

6.1.3 マネジメントポート

マネジメントポートは操作端末やNTPサーバなどのサーバ類と接続するポートです。操作端末やサーバと直接接続する必要はなく、マネジメントポートとの間にルータやスイッチを介しての接続が可能です。

注意事項

・マネジメントポートはセンサ出力ポートと併用が可能です。

6.1.4 NetFlow Exporter機能

本装置で実現するNetFlow Exporter機能は、本装置のモニタポートで受信したトラフィックを、フローごとにパケット数やオクテット数を一定の時間で集計し、本装置のセンサ出力ポートからNetFlowパケット形式でコレクタ(NetFlow情報を集約する装置)へ送信する機能です。NetFlow情報はトラフィックを受信してフローを集計し始めてから一定時間後に送信され、一定時間内に集計対象となるフローが無い場合はNetFlow情報を送信しません。

6.1.4.1 フローの識別条件

トラフィックのフローごと集計に際して、フローは「表 6.1-1」の識別項目のセットで識別されます。この識別項目のセットをフロー条件と呼びます。受信したトラフィックで識別対象が同じものは、該当フロー条件にて同じフローとして扱われます。

表 6.1-1 フロー条件とフロー識別条件の関係

#	識別項目	IPv4 フロー	IPv6 フロー	MAC フロー
1	受信モニタポート番号	0	0	0
2	MAC アドレス (DA)	0	0	0
3	MAC アドレス(SA)	0	0	0
4	VID*1	0	0	0
5	EthernetType	_	_	○*3
6	IPv4アドレス(SIP)	0	○*6	_
7	IPv4アドレス(DIP)	0	○*6	_
8	IPv6アドレス(SIP)	○*5	0	_
9	IPv6アドレス(DIP)	○*5	0	_
10	IP Protocol	0	0	_
11	L4 ポート番号(SP)	○*2	0	_
12	L4 ポート番号(DP)	○*2	0	_
13	ICMP メッセージ(タイプ, コード)	0	0	_
14	Synchronization source (SSRC)	○*4	○*4	_
	identifier			

凡例 ○:識別対象, -:識別対象外

· 注※1

TPID 値: 0x8100, 0x88A8, 0x9100 またはコンフィグレーションコマンド「vlan-tpid」の設定値

· 注※2

フラグメントパケット(先頭パケット以外)の場合,0となります。

· 注※3

コンフィグレーションコマンド「 $netflow\ mac$ 」のコマンドパラメータ「exclude-ip」により、IPv4 および IPv6 パケットのみを識別対象外(フロー集計の対象外)にすることができます。

· 注※4

RTP ストリーム測定機能が有効の場合かつ集計中フローが RTP/SRTP パケットの場合のみ識別子として扱います。

注※5

トンネリングパケット集計機能が有効の場合かつ集計中フローが IPv4 over IPv6 の場合のみ識別子となります。

· 注※6

トンネリングパケット集計機能が有効の場合かつ集計中フローが IPv6 over IPv4 の場合のみ識別子となります。

6.1.4.2 NetFlowパケット形式

NetFlowパケットはVersion 9(RFC3954)に従った形式で送信します。 フロー条件ごとのTemplate IDを表 6.1-2に示します。

表 6.1-2 Template ID

フロー条件	Template ID	説明
IPv4 フロー	1024	Template ID 1025, 1026, 1027, 1028, 1029 および 1030 に該当しな
		いフロー情報を送信します。
	1025	Template ID 1026に該当しない,かつ TCP 遅延測定機能で測定・
		集計したフロー情報を送信します。
	1026	HTTP 情報測定機能で測定・集計した TCP フロー情報を送信しま
		す。
	1027	Template ID 1030 に該当しない, かつ UDP 情報測定機能の
		Delay-Jitter 測定機能で測定・集計したフロー情報を送信しま
		す。
	1028	UDP 情報測定機能の RTP ストリーム測定機能で測定・集計したフ
		ロー情報を送信します。
	1029	Template ID 1030 に該当しない、かつ HTTP 情報測定機能で測
	1000	定・集計した UDP フロー情報を送信します。
	1030	HTTP 情報測定機能および UDP 情報測定機能の Delay-Jitter 測定
ID C -7	0040	機能で測定・集計したUDPフロー情報を送信します。
IPv6 フロー	2048	Template ID 2049, 2050, 2051, 2052, 2053 および 2054 に該当しな いフロー情報を送信します。
	2049	Template ID 2050 に該当しない,かつ TCP 遅延測定機能で測定・
	2049	集計したフロー情報を送信します。
	2050	HTTP 情報測定機能で測定・集計した TCP フロー情報を送信しま
	2000	す。
	2051	Template ID 2054に該当しない,かつ UDP 情報測定機能の
		Delay-Jitter 測定機能で測定・集計したフロー情報を送信しま
		す。
	2052	UDP 情報測定機能の RTP ストリーム測定機能で測定・集計したフ
		ロー情報を送信します。
	2053	Template ID 2054に該当しない,かつ HTTP 情報測定機能で測
		定・集計した UDP フロー情報を送信します。
	2054	HTTP 情報測定機能および UDP 情報測定機能の Delay-Jitter 測定
		機能で測定・集計した UDP フロー情報を送信します。
MAC フロー	4096	Template ID 4097に該当しないフロー情報を送信します。
	4097	ARP 情報測定機能で測定・集計したフロー情報を送信します。

6.1.4.3 NetFlow設定パラメータ

次にNetFlow Exporter機能の設定パラメータについて以下に示します。

表 6.1-3 NetFlow Exporter 機能の設定パラメーター覧

#	コンフィグレーション	デフォルト値	説明
1	flow-max-entry	1,000,000 エントリ	フローのエントリ上限数を設定します。
2	expire-time	30 秒	ユニキャスト,マルチキャスト,ブロードキ
			ャストの各種別エントリのフロー集計期間を
			設定します。
3	flow packet-max-size	1400byte	NetFlow 情報を格納する UDP ペイロードの最
			大長を設定します。
4	flow source	-	NetFlow 情報の送信元 IPv4 アドレスを任意
	ipaddress		の IPv4 アドレスに変更します。本パラメー
			タに設定が無い場合は物理インタフェースに
			設定された IPv4 アドレスが NetFlow 情報の
			送信元 IPv4 アドレスとなります。
5	flow source-id	0x0	NetFlow情報の SourceID を設定します。コ
			レクタが複数のセンサから NetFlow 情報を受
			信した際の判別に利用可能です。
6	flow send-interval	300 マイクロ秒	NetFlow Data FlowSet パケットの最小送信
			間隔を設定します。

(凡例) -:対象外

6.1.4.4 NetFlow Data FlowSetの送信契機

本装置は、フローの集計を開始してから設定パラメータ「expire-time」の期間が経過すると当該フローの集計結果をNetFlow Data FlowSet パケットとして送信します。

ただし、下記のいずれかに該当する場合は expire-time の経過を待たずに当該フローの集計結果を NetFlow Data FlowSet パケットとして送信します。

- ・ 集計中のフローが TCP かつセッションが終了している場合 (TCP \land ッダの FIN フラグまたは RST フラグが 1 のパケットを受信した場合)
- 集計中のフローが ARP かつ ARP 情報測定機能が有効の場合

6.1.4.5 フロー識別条件の変更

コンフィグレーションの設定によりフローの識別条件(表6.1-1「フロー条件とフロー識別条件の関係」)を対象外に変更できます。

必要最小限となるフローの識別条件に変更することで顧客情報の保護やNetFlowパケットの情報量を減らすことによるフロー情報収集装置(コレクタ)への負荷低減を期待できます。

次にフロー識別条件の変更によるコンフィグレーション対応について示します。

表 6.1-4 フロー識別条件の変更によるコンフィグレーション対応

		コン	フィグレーション	·対応
#	フローの識別条件	IPv4 フロー	IPv6 フロー	MAC フロー
1	受信モニタポート番号	0	0	0
2	MAC アドレス (DA)	0	0	0
3	MAC アドレス(SA)	0	0	0
4	VID	0	0	0
5	EthernetType	ı	ı	0
6	IPv4アドレス(SIP)	0	ı	-
7	IPv4アドレス(DIP)	0	-	_
8	IPv6 アドレス(SIP)	-	0	_
9	IPv6アドレス(DIP)	-	0	_
10	IP Protocol	0	0	_
11	L4 ポート番号(SP)	0	0	_
12	L4 ポート番号(DP)	0	0	-
13	ICMP メッセージ(タイプ, コード)	0	0	
14	Synchronization source (SSRC)	_	_	_
	identifier			

(凡例) ○:対象, -:対象外

6.1.4.6 Deny-Filter機能

Deny-Filter機能はモニタポート専用の機能で、モニタポートごとに設定します。 モニタポートで受信したフレームの宛先MACアドレスを判別し、マルチキャストのみ、ブロードキャストのみ、マルチキャストとブロードキャストの両方を設定条件に合わせて廃棄します。廃棄されたフレームはNetFlow情報のフロー集計、およびインタフェース統計情報関連(カウンタ、MIBなど)の対象外となります。

廃棄されたフレームの統計情報は運用コマンド「show netflow statistics detail」でモニタポートごとに確認でき、マルチキャストとブロードキャストの合計値です。

6.1.4.7 NetFlow情報量計測機能

NetFlow情報量計測機能は、モニタポートで受信した観測対象ネットワークのフロー情報(flow/sec)とセンサ出力ポートから送信するコレクタごとのNetFlowパケットの通信量(bit/sec)を計測する機能です。

運用コマンド「show netflow statistics deteil」で計測結果を表示します。

検証時や環境構築時などに本装置のみ設置することでコレクタへのNetFlow送信負荷の目安を確認することができます。

計測に必要となるコンフィグレーション設定を以下に示します。

表 6.1-5 NetFlow 情報量計測機能に必要なコンフィグレーション設定

		計測内容	
#	コンフィグレーションコマンド	フロ ー情報量 (flow/sec)	NetFlow 通信量 (bit/sec)
1	netflow {フロー条件} enable	0	0
2	flow ipaddress	-	0

(凡例)○:対象, -:対象外

注意事項

・NetFlow通信量(bit/sec)の計測をするためには、コンフィグレーションコマンド「netflow {フロー条件} enable」と「flow ipaddress」の両方を設定する必要があります。

運用コマンド「show netflow statistics」の計測表示について以下に示します。

表 6.1-6 show netflow statistics コマンドの計測表示

		計測内容	
		フロー情報量	NetFlow 通信量
#	運用コマンド	(flow/sec)	(bit/sec)
1	show netflow statistics	0	_
2	show netflow statistics detail	0	0

(凡例) ○:対象, -:対象外

6.1.4.8 expire-timeの複数種別指定

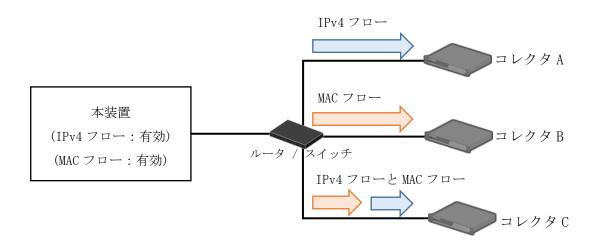
expire-timeの複数種別指定は、モニタポートで受信したフレームをユニキャスト、マルチキャスト、ブロードキャストの種別に判別し、フロー条件ごとにexpire-timeをコンフィグレーションで設定できます。

表 6.1-7 expire-time のコンフィグレーション対応

		コンフィグレーション対応		
#	フロー条件	ユニキャスト	マルチキャスト	ブロードキャスト
1	IPv4 フロー	0	0	0
2	IPv6 フロー	0	0	○*1
3	MAC フロー	0	0	0

(凡例) ○:対象, -:対象外

· 注※1


コンフィグレーション設定は可能ですが、該当するフレームはありません。

6.1.4.9 コレクタ宛先ごとのフロー条件指定

コレクタ宛先ごとのフロー条件指定は、任意のコレクタ宛先に任意のフロー条件を指定する機能です。

複数のフロー条件を有効にして利用する場合、センサ出力ポートにコンフィグレーションで設定するコレクタ宛先にフロー条件を指定することにより、複数のフロー条件で集計したフロー情報(NetFlowパケット)を任意のコレクタ宛先に任意のフロー条件を指定して送信できます。

図 6.1-1 コレクタ宛先ごとのフロー条件指定例

6.1.4.10 NetFlow送信間隔の平準化調節機能

NetFlow送信間隔の平準化調節機能は、NetFlowパケットの送信間隔を調節することでコレクタ(フロー情報集約装置)への回線負荷を平準化する機能です。

モニタポートで一度に受信したトラフィックのフロー量が多い場合, expire-time経過後に連続して NetFlowパケットを送信するため, バーストトラフィックとなりコレクタ (フロー情報集約装置) への 回線負荷が瞬間的に増大する恐れがあります。

コンフィグレーションコマンド「flow send-interval」によりNetFlowパケットの送信間隔を設定できます。

コレクタ宛先を複数指定している場合,またはフロー条件とコレクタ宛先の両方を複数設定している場合においては,1つのフロー条件から各コレクタ宛先へNetFlowパケットを送信する単位で間隔を調節できます。

図 6.1-2 NetFlowパケット送信間隔の調節単位

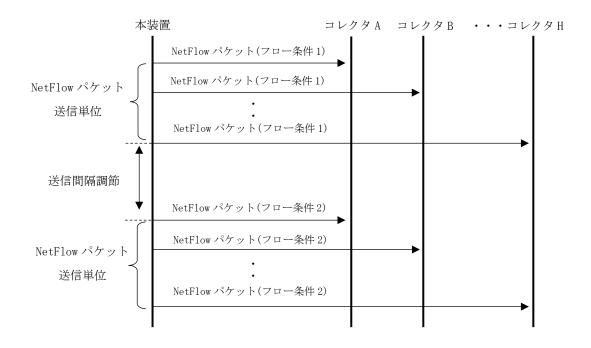
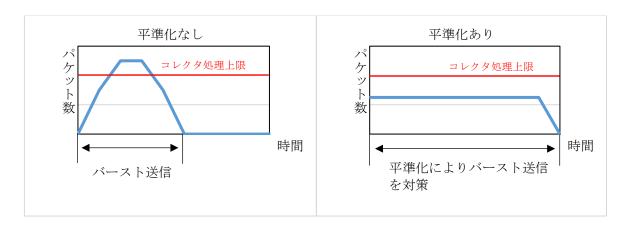
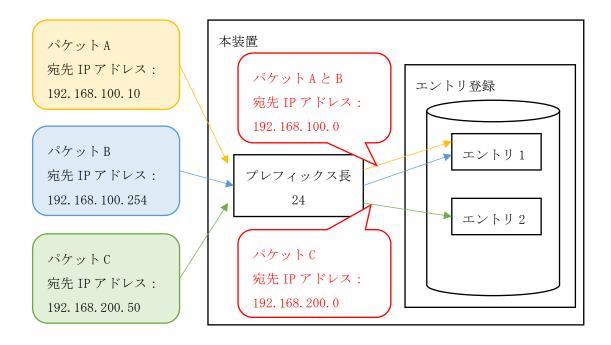



図 6.1-3 NetFlowパケット送信間隔による平準化のグラフイメージ



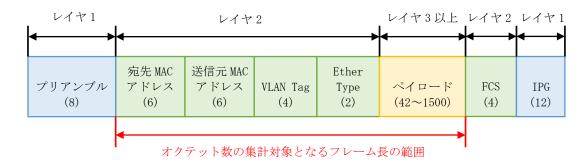
6.1.4.11 IPアドレス集約機能

IPアドレス集約機能は、モニタポートで受信したパケットの送信元IPアドレスおよび宛先IPアドレスに対して、設定したプレフィックス長までのIPアドレスが同じ場合、同じフローとしてエントリに登録する機能です。

プレフィックス長より下位ビットのIPアドレスは0になります。

図 6.1-4 宛先IPアドレス集約の例

- ・一度エントリに登録すると、集約前のIPアドレスに戻すことはできません。
- ・本機能は集約したIPアドレスの他にフローの識別条件が全て一致する必要があります。フローの識別条件が異なる場合は、異なるフローとしてエントリ登録されます。フローの識別条件は6.1.4.1フローの識別条件を参照してください。


6.1.4.12 オクテット数補正

オクテット数補正は、NetFlow Exporter機能でフローごとに集計しているオクテット数(IN_BYTESフィールド)に対して、フレームごとに設定された補正値(固定値)を加減算します。

本装置はFCSを除く、レイヤ2以上のフレーム長をオクテット数の集計対象としているため、目的に応じて補正値を算出してください。

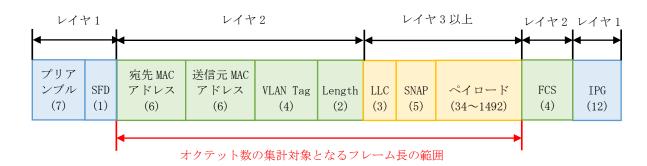

以下にオクテット数の集計対象について示します。

図 6.1-5 Ethernet IIフレーム (VLAN Tag有りの場合)

()内はオクテット数を示す。

図 6.1-6 802.3LLC/SNAPフレーム(VLAN Tag有りの場合)

()内はオクテット数を示す。

以下に算出例を示します。

例1)

レイヤ1以上の情報をオクテット数に補正 (加算) したい場合は以下の値を設定します。 プリアンブル (+ SFD) + FCS + IPG = 24

例2)

レイヤ3以上の情報をオクテット数に補正 (減算) したい場合は以下の値を設定します。 宛先MACアドレス + 送信元MACアドレス + VLAN Tag + Ether TypeまたはLength = -18

注意事項

・補正値は固定となるため、監視対象ネットワークにVLAN Tag有りとVLAN Tag無しのフレームが混在 している場合は正確なオクテット数補正ができません。

6.1.4.13 ARP情報測定機能

ARP情報測定機能は、本装置がMACフローで集計しているARP通信の送信元情報や宛先情報を測定し、測定結果をNetFlow情報に付与する機能です。

本装置でARP通信の通信状態を測定し、コレクタでセグメント内の端末の到達性を確認することができます。

下記に本装置でのARP通信の測定項目を示します。

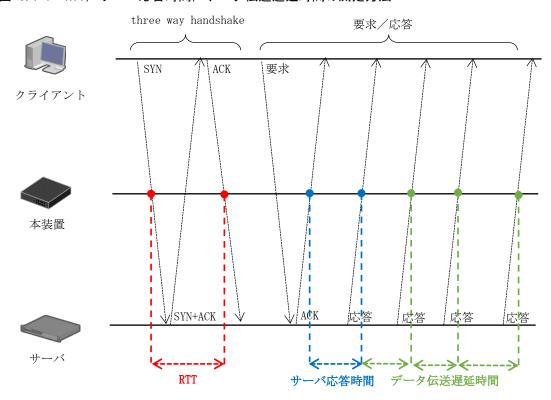
表 6.1-8 ARP 通信の測定項目

#	測定項目	説明
1	オペレーションコード	ARP パケットからオペレーションコードを抽出します。
2	送信元ハードウェアアドレス	ARP パケットから送信元ハードウェアアドレス (送信元 MAC ア
		ドレス)を抽出します。
3	送信元プロトコルアドレス	ARP パケットから送信元プロトコルアドレス (送信元 IPv4 ア
		ドレス)を抽出します。
4	宛先ハードウェアアドレス	ARP パケットから宛先ハードウェアアドレス (宛先 MAC アドレ
		ス)を抽出します。
5	宛先プロトコルアドレス	ARP パケットから宛先プロトコルアドレス (宛先 IPv4 アドレ
		ス)を抽出します。

- ・フロー識別条件の変更により、MACアドレス(DA)、MACアドレス(SA)、VID、EthernetTypeのどれか1 つ以上をフロー識別の対象外にした場合は測定できません。
- ・ARPパケットを1パケット受信すると即時、測定結果をコレクタに送信します。

6.1.4.14 TCP遅延測定機能

TCP遅延測定機能は、本装置がIPv4フローおよびIPv6フローで集計しているTCP通信のRound Trip Time (RTT), サーバ応答時間、データ伝送遅延時間、再送に関連するカウンタを測定し、測定結果をNetFlow情報に付与する機能です。


本装置でTCP通信のパフォーマンスを測定し、コレクタでサーバやアプリケーションの通信状態、応答性を確認することができます。

下記に本装置でのTCP通信の測定項目と測定方法を示します。

表 6.1-9 TCP 通信の測定項目

#	測定項目	説明
1	Round Trip Time (RTT)	TCP 接続の確立(three way handshake)時にクライアントが送
		信した SYN パケットと ACK パケット間の時間を測定します。
2	サーバ応答時間	サーバがクライアントの要求を受信して(クライアントに ACK パ
		ケットを送信して)から最初の応答パケットを送信するまでの時
		間を測定します。
3	データ伝送遅延時間	サーバが送信する応答パケットの間隔を測定します。
4	再送パケット数	再送パケットの数を測定します。
5	再送バイト数	再送パケットのデータサイズを測定します。
6	パケットロス検知数	パケットロスが発生した回数を測定します。
7	重複 ACK パケット数	重複 ACK パケットの数を測定します。

図 6.1-7 RTT, サーバ応答時間, データ伝送遅延時間の測定方法

サーバ応答時間およびデータ伝送遅延の測定では、ヘルスチェック通信のような周期的な通信の通信間隔が測定結果に含まれる場合があります。一定時間以上の測定結果をコレクタに通知したくない場合は、コンフィグレーションコマンド「tcp-monitor-timeout」によりサーバ応答時間およびデータ伝送遅延の最大測定時間を設定してください。

- ・フロー識別条件の変更により、IPv4アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(DIP)、IP Protocol、L4ポート番号(SP)、L4ポート番号(DP)のどれか1つ以上をフロー識別の対象外にした場合は測定できません。
- ・IPアドレス集約機能を有効にしている場合は測定できません。

6.1.4.15 HTTP情報測定機能

HTTP情報測定機能は、本装置がIPv4フローおよびIPv6フローで集計しているHTTPまたはHTTPSの通信から接続先情報を取得し、測定結果をNetFlow情報に付与する機能です。

本装置でHTTP通信に関する情報を測定し、コレクタでHTTP通信の接続先ごとの通信状態、応答性等を確認することができます。

下記にHTTP情報測定機能の測定項目を示します。

表 6.1-10 HTTP 情報測定機能の測定項目

#	測定項目	説明
1	HTTP サーバ名	接続先のサーバ名(文字列)を取得します。コンフィグレーション
		コマンド「http-monitor port」で指定した宛先 L4 ポート番号と
		一致する TCP パケットまたは UDP パケットから接続先サーバ名を
		抽出します。

- ・フロー識別条件の変更により、IPv4アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv6アドレス(DIP)、IP Protocol、L4ポート番号(SP)、L4ポート番号(DP)のどれか1つ以上をフロー識別の対象外にした場合は測定できません。
- ・IPアドレス集約機能を有効にしている場合は測定できません。

6.1.4.16 UDP情報測定機能

UDP情報測定機能は、本装置がIPv4フローおよびIPv6フローで集計しているUDP通信のデータ伝送遅延時間、データ伝送ジッタまたは上位プロトコルのサービス品質に関する項目を測定し、測定結果をNetFlow情報に付与する機能です。

本装置でUDP通信のパフォーマンスを測定し、コレクタでサーバやアプリケーションの通信状態、応答性を確認することができます。

下記に本装置でのUDP通信の測定機能と各機能の測定項目を示します。

表 6.1-11 UDP 通信の測定機能

#	測定機能	説明
1	Delay-Jitter 測定機能	サーバやアプリケーションが送信する UDP パケットの伝送間隔や 伝送間隔のゆらぎを測定します。コンフィグレーションコマンド
		「udp-monitor delay-jitter port」で指定した L4 ポート番号と 一致する UDP パケットに対し測定を行います。
2	RTP ストリーム測定機能 ^{※1}	音声・映像データを伝送する RTP または SRTP パケットの通信状態 を測定します。コンフィグレーションコマンド「udp-monitor rtp-stream port」で指定した L4 ポート番号と一致する RTP また は SRTP パケットに対し測定を行います。

· 注※1

RTP ストリーム測定機能で測定対象のフローは,Delay-Jitter 測定機能では測定されません。

表 6.1-12 UDP 通信の測定機能と測定項目

#	測定機能	測定項目	説明
1	Delay-Jitter 測定機能	データ伝送遅延時間	サーバやアプリケーションが送信する
			UDP パケットの伝送間隔を測定します。
2		データ伝送ジッタ	UDP パケットの伝送間隔のゆらぎを測定
			します。
3	RTP ストリーム測定機能	データ伝送遅延時間	サーバやアプリケーションが送信する音
			声・映像データの伝送間隔を測定しま
			す。
4		データ伝送ジッタ	音声・映像データの伝送間隔のゆらぎを
			測定します。
5		パケットロス数	音声・映像データを伝送するパケットの
			パケットロス数を測定します。
6		順序外パケット検知数	並び替えを必要とする音声・映像データ
			のパケットが発生した回数を測定しま
			す。
7		Round Trip Time	音声・映像データの送信元と、音声・映
		(RTT)	像データの宛先または中継装置間の往復
			伝送時間を測定します。

- ・フロー識別条件の変更により、IPv4アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv4アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv6アドレス(SIP)、IPv4アドレス(DIP)、IPv6アドレス(SIP) (IPv6アドレス(SIP) (IPv6アドレス(SIP) (IPv6アドレス(S
- ・IPアドレス集約機能を有効にしている場合は測定できません。

6.1.4.17 トンネリングパケット集計機能

トンネリングパケット集計機能は、 IPv4 over IPv6等のトンネリング技術を使用した通信の各ヘッダ 情報を識別してフロー集計する機能です。

表 6.1-13 本機能で識別可能なトンネリング方式

#	トンネリング方式	説明
1	IPv4 over IPv6	外側の IPv6 ヘッダ、内側の IPv4 ヘッダを識別して当該通信を IPv4 フローで集計します。コレクタに送信する集計結果 (NetFlow情報) には IPv4 ヘッダと IPv6 ヘッダの両方が含まれます。
2	IPv6 over IPv4	外側の IPv4 ヘッダ、内側の IPv6 ヘッダを識別して当該通信を IPv6 フローで集計します。コレクタに送信する集計結果 (NetFlow 情報) には IPv4 ヘッダと IPv6 ヘッダの両方が含まれます。

- ・本機能を有効にする場合は、事前にコンフィグレーションでIPv4フローの集計とIPv6フローの集計 を両方有効にしてください。
- ・トンネリング方式がIPv4 over IPv6の場合,モニタポートで受信したパケットの外側のヘッダが IPv6,かつIPv6ヘッダの次ヘッダ番号 (next header) の値がIP (4) のパケットをIPv4 over IPv6 通信として集計します。
- ・トンネリング方式がIPv6 over IPv4の場合,モニタポートで受信したパケットの外側のヘッダが IPv4,かつIPv4ヘッダのプロトコル番号の値がIPv6 (41)のパケットをIPv6 over IPv4通信として 集計します。

6.1.4.18 NetFlowキャッシュエージング機能

NetFlowキャッシュエージング機能は、最後に当該フローを受信してから本機能で設定した期間が満了するまで、集計中フローエントリのキャッシュ情報を保持する機能です。本機能により、TCP遅延測定やHTTP情報測定において、設定パラメータ「expire-time」より長い期間の通信に対する測定が可能になります。

下記にNetFlowキャッシュエージング期間とexpire-timeの関係を示します。

図 6.1-8 NetFlowキャッシュエージング期間とexpire-timeの関係

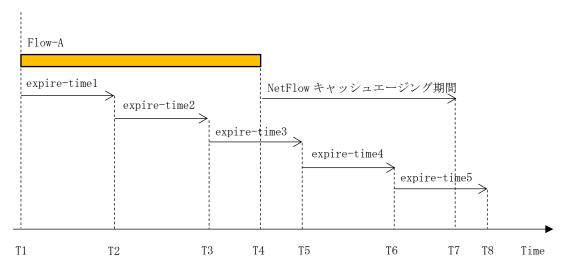


図 6.1-8の例は,T1からT4まで通信が発生したフロー (F1ow-A) とNetF1owキャッシュエージング期間およびexpire-timeの関係を示しています。フローエントリの削除は,NetF1owキャッシュエージング期間が満了後,次Cexpire-timeが満了したタイミング (T8) で行います。

- ・TCP遅延測定機能で測定中のフロー、またはHTTP情報測定機能によりHTTPサーバ名の測定に成功したフローのみエージングします。
- ・NetFlowキャッシュエージング期間を長くするほど本装置のフローエントリ数が増加しやすくなります。

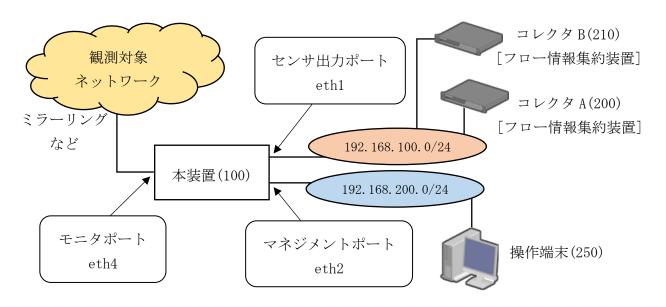
6.1.4.19 パケットサンプリング機能

パケットサンプリング機能は、集計対象のトラフィックをユーザがコンフィグレーションしたサンプリング間隔で集計する機能です。サンプリング対象外のパケットは廃棄処理を実施して対象パケットのみを集計することにより、ハードウェアによる無作為のパケット廃棄を発生させずにフロー集計が可能となります。

下記に本機能の動作内容を記載します。

表 6.1-14 パケットサンプリング機能の動作内容

#	項目	内容	備考
1	パケットサンプリング 間隔値の設定単位	モニタポート単位	コンフィグレーションコマンド「flow-sampling eth1 1000」を設定した場合, eth1 で受信したパケットのみサンプリ ング対象となります
2	パケットサンプリング 間隔値の設定値	サンプリング間隔値 (パケット数)	コンフィグレーションコマンド「flow-sampling eth1 1000」を設定した場合, eth1 で受信した 1000 パケット毎に, 1 パケットのみを集計対象とします


パケットサンプリング機能は、集計対象のトラフィックを意図的にサンプリングする機能です。そのため、本機能と集計対象のトラフィックが全て必要なNetFlow Exporter機能との併用は推奨いたしません。

6.2 コンフィグレーション センサ機能のコンフィグレーションについて説明します。

6.2.1 NetFlow Exporter機能のネットワーク構成例

次にNetFlow Exporter機能を使用したネットワーク構成例を次に示します。

図 6.2-1 NetFlow Exporter 機能を使用したネットワーク構成例

※カッコ内はネットワークのホスト番号を示す。

6.2.2 コンフィグレーション設定例

図6.2-1で示したNetFlow Exporter機能を使用したネットワーク構成例のコンフィグレーション設定例について次に示します。

図 6.2-2 構成例のコンフィグレーション設定例

SP# configure [SP] eth1 …物理インタフェースethlを有効化 [SP-eth1] ipaddress 192.168.100.100/24 …IPアドレスを設定 [SP-eth1] exit [SP] eth2 …物理インタフェースeth2を有効化 [SP-eth2] ipaddress 192.168.200.100/24 …IPアドレスを設定 [SP-eth2] exit …物理インタフェースeth4を有効化 [SP] eth4 [SP-eth4] mtu 9216 …mtuを9216に設定(観測対象ネットワーク にジャンボフレームが流れている場合はmtuを大きな値にすることを推奨します) [SP-eth4] exit [SP] netflow …フロー条件のIPv4フローを有効化 [SP-netflow] netflow ipv4 enable [SP-netflow] netflow mac enable expire-time 30 60 60 …フロー条件のMACフローを有効 化, expire-timeのユニキャスト・マルチキャスト・ブロードキャストをそれぞれの時間に設定 [SP-netflow] exclude-field ipv4 src-ip …IPv4フローのフロー識別条件から送信元 IPv4アドレスを対象外に設定 [SP-netflow] adjust-in-bytes-field 24 …オクテット数補正値を設定 [SP-netflow] ipv4-prefix-mask dst-ip 24 …宛先IPアドレス集約のプレフィックス長 [SP-netflow] vlan-tpid 0x1111 0x2222 0x3333 …VLAN Tagを識別するTPID値を設定 [SP-netflow] traffic-monitor-port eth4 …モニタポートをeth4に設定 [SP-netflow] deny-filter eth4 broadcast …モニタポートにDenv-Filterのブロードキ ャストパケット条件を設定 [SP-netflow] mgmt-port eth2 …マネジメントポートをeth2に設定 [SP-netflow] output-port eth1 …センサ出力ポートをeth1に設定 [SP-netflow-output-port-eth1] flow ipaddress 192.168.100.200 port 9996 …コレクタAの IPアドレスおよびL4ポート番号を設定 [SP-netflow-output-port-eth1] flow ipaddress 192.168.100.210 port 9996 mac ・・・コレクタBの IPアドレスおよびL4ポート番号, MACフローのみの送信に設定 [SP-netflow-output-port-eth1] exit [SP-netflow] exit [SP] addrunning …設定を反映 [SP] exit SP# SP# copy conf running start …コンフィグレーションを保存 WARNING: Do you really want this config to become the start config (y/n)? [n]: y SP# SP# display conf running …コンフィグレーションを表示 ############## # Ethernet # ############# eth1 **# INTERFACE STATEMENTS** # IPV4 STATEMENTS # IPV4 ADDRESSES ipaddress 192. 168. 100. 100/24 # IPV6 STATEMENTS

IPV6 ADDRESSES
IPV6 PREFIXES

```
# ETHERNET STATEMENTS
eth2
    # INTERFACE STATEMENTS
    # IPV4 STATEMENTS
    # IPV4 ADDRESSES
      ipaddress 192. 168. 200. 100/24
    # IPV6 STATEMENTS
    # IPV6 ADDRESSES
    # IPV6 PREFIXES
   # ETHERNET STATEMENTS
eth4
    # INTERFACE STATEMENTS
     mtu 9216
    # IPV4 STATEMENTS
    # IPV4 ADDRESSES
    # IPV6 STATEMENTS
   # IPV6 ADDRESSES
   # IPV6 PREFIXES
    # ETHERNET STATEMENTS
##############################
# LOG SESSIONS #
log
    # LOG SESSIONS
      log-session MNG local 2 MB
      log-session NTP local 512 KB
      log-session SNMP local 512 KB
    # SERVICES LOG SESSIONS
      log ntp NTP info
      log snmp SNMP info
    # DAEMONS LOG SESSIONS
#############
# SNMP
         #
#############
snmp
##################
# ROUTING
######################
rtg
    # LOG SERVICE
    # GLOBAL INFO
    # ACCESS LIST & PREFIX LIST
    # COMMUNITY-LIST & EXTCOMMUNITY-LIST
    # ROUTE-MAPS
    # INTERFACES
   # DYNAMIC ROUTING
#############
   FIL #
#############
fil
###########
# NTP #
##########
ntp
   # NTP STATEMENTS
     ntp disable
      default-version 4
      default-polling 8
    # REMOTE SERVERS
    # LOG SERVICE
      log ntp NTP info
```

```
###############################
# LOOPBACK #
###############################
###########
# GEN
###########
gen
    # GEN STATEMENT
      hostname SP
      clock timezone UTC
      telnet enable
      ssh disable
      icmp limit rate 1000
      icmp limit type unreach quench redirect time_exceed param_prob
    # ARP TABLE
    # NDP TABLE
    # HOST
#################
   NETFLOW #
#################
netflow
    # NETFLOW STATEMENTS
      netflow ipv4 enable
      netflow mac enable expire-time 30 60 60
      exclude-field ipv4 src-ip
    # ADVANCED
      adjust-in-bytes-field 24
      ipv4-prefix-mask dst-ip 24
      vlan-tpid 0x1111 0x2222 0x3333
    # TRAFFIC MONITOR PORT
      traffic-monitor-port eth4
    # DENY FILTER
      deny-filter eth4 broadcast
    # MANAGEMENT PORT
      mgmt-port eth2
    # OUTPUT PORT
      output-port eth1
      # FLOW INFORMATION
        flow ipaddress 192.168.100.200 port 9996
        flow ipaddress 192.168.100.210 port 9996 mac
```

[SP]

トラブル発生時の対応

この章では、トラブル発生時の対応について説明します。

- 7.1 装置の問題, 障害発生時の対応
- 7.2 障害情報取得方法
- 7.3 本装置の再起動

7.1 装置の問題、障害発生時の対応

(1) 本装置の電源が入らない

本装置の電源を 0FF にし、電源ケーブルの接続および電源設備を確認してください。

電源ケーブルの接続および電源設備に問題がなく、本装置の電源が入らない場合は販売店に連絡してください。

(2) ログインパスワードのトラブル

運用中、ログインユーザのパスワードを忘れてしまい本装置にログインできない場合は、以下 の手順で対応してください。

- 1. 装置管理者へ連絡してください。
- 2. 運用コマンド「edit system users」でログインユーザのパスワードを変更してください。 パスワードの変更は装置管理者が実施してください。

装置管理者がパスワードを失念・紛失した場合は販売店に連絡してください。

(3) ハードウェア、ソフトウェアの障害による再起動

ハードウェアやソフトウェアの障害により、自動で本装置の再起動が行われることがあります。 その場合は障害情報を保存した後に再起動しますので、起動完了後に障害情報を取得してください。取得した障害情報は装置管理者に送付してください。障害情報の取得方法は「7.2 障害情報取得方法」を参照してください。

(4) 接続したケーブルを見直してもインタフェースがリンクアップしない

接続したケーブルのインタフェースがリンクアップしない場合は以下の手順で対応してください。

- 1. 本装置の物理インタフェースのコンフィグレーションに「interface down」が設定されていないか確認してください。「interface down」となっている場合はコンフィグレーションで「interface up」に設定してください。
- 2. 隣接装置のインタフェース設定が固定モードとなっていないか確認してください。本装置の 1G インタフェースは 10/100/1000Mbps のオートネゴシエーションのみに対応しています。

(5) ジャンボフレームの NetFlow 情報だけが出力されない

モニタポートの mtu 設定を適切な値に設定してください。

(6) プロンプトに「You have warning messages. Use "show sp" to see them.」のメッセージが出力される。

運用コマンド「show sp」を実行して WARNING の内容を確認してください。WARNING の詳細は AXSensor コマンド・ログレファレンスの「表 1.2-5 show sp で表示される (2)の WARNING 一覧」を 参照してください。

7.2 障害情報取得方法

障害情報の取得方法について説明します。

下記手順にしたがって解析情報ファイルを取得してください。

- 1. 装置管理者モードでログインしてください。
- 2. 運用コマンド「show tech-support」を実行してください。
- 3. 運用コマンド「export dump-file」を実行してください。

実行すると取得可能な解析ファイルを収集し,エクスポートまでが行われます。解析情報の取得にはネットワークを経由してエクスポートを行います。

ネットワークを経由してエクスポート

コマンド「export dump-file」のパラメータに URL を指定することでネットワーク経由でのエクスポートを実施します。ftp, tftp または scp を利用してのファイル転送ですので,エクスポート先となる機器で ftp, tftp または ssh サーバが起動している必要があります。

※外部から本装置へのftp/tftp/scp接続はできません。

7.3 本装置の再起動

障害が回復しない場合は、本装置の再起動により回復する可能性があります。

下記手順にしたがって本装置を再起動してください。

- 1. 装置管理者モードでログインしてください。
- 2. 運用コマンド「reload」を実行してください。

リモート端末, コンソールのどちらからもログイン, 操作ができない場合, リセットボタンを押すこと で再起動が可能です。

注意事項

この章では、注意事項について説明します。

8.1 注意事項

8.1 注意事項

(1) 運用コマンド「show netflow statistics detail」のカウンタに関する注意事項

・Totalの「Received Packets」「Received Bytes」がカウントアップされない。

観測対象ネットワークからトラフィックを受信していない可能性があります。モニタポートのコンフィグレーション設定、または物理インタフェースの設定および統計情報を確認してください。

・各フロー条件の「Overflow Packets」がカウントアップされる

フローエントリ数超過によりエントリが登録できません。コンフィグレーション「flow-max-entry」の設定で最大エントリ数の設定を見直してください。

・各フロー条件の「Discard Flows」がカウントアップされる。

ライセンスが設定されているか確認してください。

センサ出力ポートに送信先(コレクタ)のコンフィグレーション設定がされているか確認して ください。

観測対象ネットワークからトラフィック受信中にコンフィグレーション「netflow」で集約フローを disable の設定にしていないか確認してください。

・Collector の「Discard Packets」, 「Discard Templates」, 「Discard Flows」がカウントアップされる

センサ出力ポートがリンクダウンしていないか確認してください。

運用コマンド「show ip route」でセンサ出力ポートと送信先(コレクタ)のルーティングテーブル情報が正しいか確認してください。

(2) モニタポート設定における注意事項

センサ出力ポートおよびマネジメントポートで使用していたインタフェースを IP アドレスの 削除を行わないでモニタポートに設定した場合,該当インタフェースに ARP エントリが存在す る間は,モニタポートからパケットが出力されます。

付録

付録A 準拠規格

付録A.1 NetFlow

表 A-1 NetFlow の準拠規格および勧告

規格番号(発行年月)	規格名
RFC3954(2004年10月)	Cisco Systems NetFlow Services Export Version 9

付録A.2 SSH

表 A-2 SSH の準拠規格および勧告

規格番号(発行年月)	規格名	
RFC4250(2006年1月)	The Secure Shell (SSH) Protocol Assigned Numbers	
RFC4251(2006年1月)	The Secure Shell (SSH) Protocol Architecture	
RFC4252(2006年1月)	The Secure Shell (SSH) Authentication Protocol	
RFC4253(2006年1月)	The Secure Shell (SSH) Transport Layer Protocol	
RFC4254(2006年1月)	The Secure Shell (SSH) Connection Protocol	
RFC4256(2006年1月)	Generic Message Exchange Authentication for the Secure Shell	
	Protocol (SSH)	
RFC4335(2006年1月)	The Secure Shell (SSH) Session Channel Break Extension	
RFC4344(2006年1月)	The Secure Shell (SSH) Transport Layer Encryption Modes	
RFC4419(2006年3月)	Diffie-Hellman Group Exchange for the Secure Shell (SSH)	
	Transport Layer Protocol	
RFC4716(2006年11月)	The Secure Shell (SSH) Public Key File Format	
RFC5656(2009年12月)	Elliptic Curve Algorithm Integration in the Secure Shell	
	Transport Layer	
RFC6668(2012年7月)	SHA-2 Data Integrity Verification for the Secure Shell (SSH)	
	Transport Layer Protocol	
RFC8270(2017年12月)	Increase the Secure Shell Minimum Recommended Diffie-Hellman	
	Modulus Size to 2048 Bits	
RFC8308(2018年3月)	Extension Negotiation in the Secure Shell (SSH) Protocol	
RFC8332(2018年3月)	Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell	
	(SSH) Protocol	
RFC8709(2020年2月)	Ed25519 and Ed448 Public Key Algorithms for the Secure Shell	
	(SSH) Protocol	
RFC8731(2020年2月)	Secure Shell (SSH) Key Exchange Method Using Curve25519 and	
	Curve448	

付録A.3 NTP

表 A-3 NTP の準拠規格および勧告

規格番号(発行年月)	規格名
RFC1305(1992年3月)	Network Time Protocol (Version 3) Specification,
	Implementation and Analysis
RFC5905(2010年6月)	Network Time Protocol Version 4: Protocol and Algorithms
	Specification

付録A.4 SYSLOG

表 A-4 SYSLOG の準拠規格および勧告

規格番号(発行年月)	規格名
RFC3164(2001年8月)	The BSD syslog Protocol

付録A.5 イーサネット

表 A-5 イーサネットインタフェースの準拠規格および勧告

種別	規格	規格名
10BASE-T,	IEEE802. 3 2008	Carrier sense multiple access with collision
100BASE-TX,	Edition	detection (CSMA/CD) access method and physical
1000BASE-T,		layer Specifications
10GBASE-R	IEEE802. 3ae	Media Access Control(MAC) Parameters, Physical
	Standard-2002	Layer, and
		Management Parameters for 10Gb/s Operation

付録A.6 SNMP

表 A-6 SNMP の準拠規格および勧告

規格番号(発行年月)	規格名	
RFC1901(1996 年1月)	Introduction to Community-based SNMPv2	
RFC1902(1996 年1月)	Structure of Management Information for Version 2 of the	
	Simple Network Management Protocol (SNMPv2)	
RFC1903(1996 年1月)	Textual Conventions for Version 2 of the Simple Network	
	Management Protocol (SNMPv2)	
RFC1904(1996 年1月)	Conformance Statements for Version 2 of the Simple Network	
	Management Protocol (SNMPv2)	
RFC1905(1996 年1月)	Protocol Operations for Version 2 of the Simple Network	
	Management Protocol (SNMPv2)	
RFC1906(1996 年1月)	Transport Mappings for Version 2 of the Simple Network	
	Management Protocol (SNMPv2)	
RFC1907(1996 年1月)	Management Information Base for Version 2 of the Simple	
	Network Management Protocol (SNMPv2)	
RFC1908(1996 年1月)	Coexistence between Version 1 and Version 2 of the Internet-	
	standard Network Management Framework	

付録A.7 MIB

表 A-7 MIBの準拠規格および勧告

規格番号(発行年月)	規格名
RFC1213(1991 年 3 月)	Management Information Base for Network Management of
	TCP/IP-based internets: MIB-II
RFC2863(2000 年 6 月)	The Interfaces Group MIB
RFC3418(2002 年 12 月)	Management Information Base (MIB) for the Simple Network
	Management Protocol (SNMP)
RFC3635(2003 年9月)	Definitions of Managed Objects for the Ethernet-like
	Interface Types
RFC4022(2005 年 3 月)	Management Information Base for the Transmission Control
	Protocol (TCP)
RFC4113(2005 年 6 月)	Management Information Base for the User Datagram Protocol
	(UDP)
RFC4293(2006 年4月)	Management Information Base for the Internet Protocol (IP)